#include "gemm.h"
|
#include "utils.h"
|
#include "cuda.h"
|
#include <stdlib.h>
|
#include <stdio.h>
|
#include <math.h>
|
|
void gemm_bin(int M, int N, int K, float ALPHA,
|
char *A, int lda,
|
float *B, int ldb,
|
float *C, int ldc)
|
{
|
int i,j,k;
|
for(i = 0; i < M; ++i){
|
for(k = 0; k < K; ++k){
|
char A_PART = A[i*lda+k];
|
if(A_PART){
|
for(j = 0; j < N; ++j){
|
C[i*ldc+j] += B[k*ldb+j];
|
}
|
} else {
|
for(j = 0; j < N; ++j){
|
C[i*ldc+j] -= B[k*ldb+j];
|
}
|
}
|
}
|
}
|
}
|
|
float *random_matrix(int rows, int cols)
|
{
|
int i;
|
float *m = calloc(rows*cols, sizeof(float));
|
for(i = 0; i < rows*cols; ++i){
|
m[i] = (float)rand()/RAND_MAX;
|
}
|
return m;
|
}
|
|
void time_random_matrix(int TA, int TB, int m, int k, int n)
|
{
|
float *a;
|
if(!TA) a = random_matrix(m,k);
|
else a = random_matrix(k,m);
|
int lda = (!TA)?k:m;
|
float *b;
|
if(!TB) b = random_matrix(k,n);
|
else b = random_matrix(n,k);
|
int ldb = (!TB)?n:k;
|
|
float *c = random_matrix(m,n);
|
int i;
|
clock_t start = clock(), end;
|
for(i = 0; i<10; ++i){
|
gemm_cpu(TA,TB,m,n,k,1,a,lda,b,ldb,1,c,n);
|
}
|
end = clock();
|
printf("Matrix Multiplication %dx%d * %dx%d, TA=%d, TB=%d: %lf ms\n",m,k,k,n, TA, TB, (float)(end-start)/CLOCKS_PER_SEC);
|
free(a);
|
free(b);
|
free(c);
|
}
|
|
|
void gemm(int TA, int TB, int M, int N, int K, float ALPHA,
|
float *A, int lda,
|
float *B, int ldb,
|
float BETA,
|
float *C, int ldc)
|
{
|
gemm_cpu( TA, TB, M, N, K, ALPHA,A,lda, B, ldb,BETA,C,ldc);
|
}
|
|
|
//--------------------------------------------
|
// XNOR bitwise GEMM for binary neural network
|
//--------------------------------------------
|
|
#include <stdint.h>
|
|
static inline unsigned char xnor(unsigned char a, unsigned char b) {
|
//return a == b;
|
return !(a^b);
|
}
|
|
// INT-32
|
static inline uint32_t get_bit_int32(uint32_t const*const src, size_t index) {
|
size_t src_i = index / 32;
|
int src_shift = index % 32;
|
unsigned char val = (src[src_i] & (1 << src_shift)) > 0;
|
return val;
|
}
|
|
static inline uint32_t xnor_int32(uint32_t a, uint32_t b) {
|
return ~(a^b);
|
}
|
|
static inline uint64_t xnor_int64(uint64_t a, uint64_t b) {
|
return ~(a^b);
|
}
|
|
|
static inline uint32_t fill_bit_int32(char src) {
|
if (src == 0) return 0x00000000;
|
else return 0xFFFFFFFF;
|
}
|
|
static inline uint64_t fill_bit_int64(char src) {
|
if (src == 0) return 0x0000000000000000;
|
else return 0xFFFFFFFFFFFFFFFF;
|
}
|
|
void binary_int32_printf(uint32_t src) {
|
int i;
|
for (i = 0; i < 32; ++i) {
|
if (src & 1) printf("1");
|
else printf("0");
|
src = src >> 1;
|
}
|
printf("\n");
|
}
|
|
void binary_int64_printf(uint64_t src) {
|
int i;
|
for (i = 0; i < 64; ++i) {
|
if (src & 1) printf("1");
|
else printf("0");
|
src = src >> 1;
|
}
|
printf("\n");
|
}
|
|
/*
|
void gemm_nn_custom_bin_mean(int M, int N, int K, float ALPHA_UNUSED,
|
unsigned char *A, int lda,
|
unsigned char *B, int ldb,
|
float *C, int ldc, float *mean_arr)
|
{
|
int *count_arr = calloc(M*N, sizeof(int));
|
|
int i, j, k;
|
for (i = 0; i < M; ++i) { // l.n - filters [16 - 55 - 1024]
|
for (k = 0; k < K; ++k) { // l.size*l.size*l.c - one filter size [27 - 9216]
|
char a_bit = get_bit(A, i*lda + k);
|
|
for (j = 0; j < N; ++j) { // out_h*out_w - one channel output size [169 - 173056]
|
char b_bit = get_bit(B, k*ldb + j);
|
count_arr[i*ldc + j] += xnor(a_bit, b_bit);
|
}
|
}
|
}
|
|
for (i = 0; i < M; ++i) {
|
float mean_val = mean_arr[i];
|
for (j = 0; j < N; ++j) {
|
C[i*ldc + j] = (2 * count_arr[i*ldc + j] - K) * mean_val;
|
}
|
}
|
free(count_arr);
|
}
|
*/
|
|
/*
|
void gemm_nn_custom_bin_mean_transposed(int M, int N, int K, float ALPHA_UNUSED,
|
unsigned char *A, int lda,
|
unsigned char *B, int ldb,
|
float *C, int ldc, float *mean_arr)
|
{
|
int *count_arr = calloc(M*N, sizeof(int));
|
|
int i, j, k;
|
for (i = 0; i < M; ++i) { // l.n - filters [16 - 55 - 1024]
|
for (j = 0; j < N; ++j) { // out_h*out_w - one channel output size [169 - 173056]
|
for (k = 0; k < K; ++k) { // l.size*l.size*l.c - one filter size [27 - 9216]
|
char a_bit = get_bit(A, i*lda + k);
|
char b_bit = get_bit(B, j*ldb + k);
|
count_arr[i*ldc + j] += xnor(a_bit, b_bit);
|
}
|
}
|
}
|
|
for (i = 0; i < M; ++i) {
|
float mean_val = mean_arr[i];
|
for (j = 0; j < N; ++j) {
|
C[i*ldc + j] = (2 * count_arr[i*ldc + j] - K) * mean_val;
|
}
|
}
|
free(count_arr);
|
}
|
*/
|
|
/*
|
void gemm_nn_custom_bin_mean(int M, int N, int K, float ALPHA_UNUSED,
|
unsigned char *A, int lda,
|
unsigned char *B, int ldb,
|
float *C, int ldc, float *mean_arr)
|
{
|
int *count_arr = calloc(M*N, sizeof(int));
|
|
int i, j, k, h;
|
|
#pragma omp parallel for
|
for (i = 0; i < M; ++i) { // l.n - filters [16 - 55 - 1024]
|
for (k = 0; k < K; ++k) { // l.size*l.size*l.c - one filter size [27 - 9216]
|
const char a_bit = get_bit(A, i*lda + k);
|
uint64_t a_bit64 = fill_bit_int64(a_bit);
|
int k_ldb = k*ldb;
|
|
for (j = 0; j < N; j += 64) { // out_h*out_w - one channel output size [169 - 173056]
|
if ((N - j > 64) && (k_ldb % 8 == 0)) {
|
uint64_t b_bit64 = *((uint64_t *)(B + (k_ldb + j) / 8));
|
uint64_t c_bit64 = xnor_int64(a_bit64, b_bit64);
|
//printf("\n %d \n",__builtin_popcountll(c_bit64)); // gcc
|
printf("\n %d \n", __popcnt64(c_bit64)); // msvs
|
|
int h;
|
for (h = 0; h < 64; ++h)
|
if ((c_bit64 >> h) & 1) count_arr[i*ldc + j + h] += 1;
|
|
//binary_int64_printf(a_bit64);
|
//binary_int64_printf(b_bit64);
|
//binary_int64_printf(c_bit64);
|
}
|
else {
|
for (; j < N; ++j) { // out_h*out_w - one channel output size [169 - 173056]
|
char b_bit = get_bit(B, k_ldb + j);
|
if (xnor(a_bit, b_bit)) count_arr[i*ldc + j] += 1;
|
}
|
}
|
|
}
|
}
|
}
|
|
if (mean_arr) {
|
//int K_2 = K / 2;
|
for (i = 0; i < M; ++i) {
|
float mean_val = mean_arr[i];
|
//float mean_val2 = 2 * mean_val;
|
for (j = 0; j < N; ++j) {
|
C[i*ldc + j] = (2 * count_arr[i*ldc + j] - K) * mean_val;
|
//C[i*ldc + j] = (count_arr[i*ldc + j] - K_2) *mean_val2;
|
}
|
}
|
}
|
else {
|
for (i = 0; i < M; ++i) {
|
for (j = 0; j < N; ++j) {
|
C[i*ldc + j] = count_arr[i*ldc + j] - K / 2;
|
}
|
}
|
}
|
|
free(count_arr);
|
|
//getchar();
|
}
|
*/
|
|
|
/*
|
void gemm_nn_custom_bin_mean_transposed(int M, int N, int K, float ALPHA_UNUSED,
|
unsigned char *A, int lda,
|
unsigned char *B, int ldb,
|
float *C, int ldc, float *mean_arr)
|
{
|
int i, j, k, h;
|
|
#pragma omp parallel for
|
for (i = 0; i < M; ++i) { // l.n - filters [16 - 55 - 1024]
|
float mean_val = mean_arr[i];
|
|
for (j = 0; j < N; ++j) { // out_h*out_w - one channel output size [169 - 173056]
|
int count = 0;
|
|
for (k = 0; k < K; k += 64) { // l.size*l.size*l.c - one filter size [27 - 9216]
|
uint64_t a_bit64 = *((uint64_t *)(A + (i*lda + k) / 8));
|
uint64_t b_bit64 = *((uint64_t *)(B + (j*ldb + k) / 8));
|
uint64_t c_bit64 = xnor_int64(a_bit64, b_bit64);
|
|
#ifdef WIN32
|
int tmp_count = __popcnt64(c_bit64);
|
#else
|
int tmp_count = __builtin_popcountll(c_bit64);
|
#endif
|
|
if (K - k < 64) tmp_count = tmp_count - (64 - (K - k)); // remove extra bits
|
count += tmp_count;
|
//binary_int64_printf(c_bit64);
|
//printf(", count = %d \n\n", tmp_count);
|
}
|
|
C[i*ldc + j] = (2 * count - K) * mean_val;
|
}
|
}
|
}
|
*/
|
|
//----------------------------
|
|
|
#if (defined(__AVX__) && defined(__x86_64__)) || defined(_WIN64)
|
|
#define OSXSAVEFlag (1UL<<27)
|
#define AVXFlag ((1UL<<28)|OSXSAVEFlag)
|
#define FMAFlag ((1UL<<12)|AVXFlag|OSXSAVEFlag)
|
#define CLMULFlag ((1UL<< 1)|AVXFlag|OSXSAVEFlag)
|
#define VAESFlag ((1UL<<25)|AVXFlag|OSXSAVEFlag)
|
|
#ifdef _WIN64
|
#include <intrin.h>
|
#include <ammintrin.h>
|
#include <immintrin.h>
|
#include <smmintrin.h>
|
|
#else // Linux GCC/Clang
|
#include <x86intrin.h>
|
#include <ammintrin.h>
|
#include <immintrin.h>
|
#include <smmintrin.h>
|
#include <cpuid.h>
|
|
void asm_cpuid(uint32_t* abcd, uint32_t eax)
|
{
|
uint32_t ebx = 0, edx = 0, ecx = 0;
|
|
// EBX is saved to EDI and later restored
|
__asm__("movl %%ebx, %%edi;"
|
"cpuid;"
|
"xchgl %%ebx, %%edi;"
|
: "=D"(ebx),
|
"+a"(eax), "+c"(ecx), "=d"(edx));
|
|
abcd[0] = eax;
|
abcd[1] = ebx;
|
abcd[2] = ecx;
|
abcd[3] = edx;
|
}
|
|
#endif
|
|
int simd_detect_x86(unsigned int idFeature)
|
{
|
uint32_t regs[4]; // EAX, EBX, ECX, EDX;
|
#ifdef _WIN32
|
__cpuid(regs, 0);
|
if (regs[0] > 1U) __cpuid(regs, 1);
|
#else
|
__get_cpuid(0, ®s[0], ®s[1], ®s[2], ®s[3]);
|
if(regs[0] > 1U) __get_cpuid(1, ®s[0], ®s[1], ®s[2], ®s[3]);
|
#endif
|
|
if ((regs[2] & idFeature) != idFeature)
|
return 0;
|
return 1;
|
}
|
|
int is_fma_avx() {
|
static int result = -1;
|
if (result == -1) {
|
result = simd_detect_x86(AVXFlag);
|
if (result == 1) printf(" Used AVX \n");
|
else printf(" Not used AVX \n");
|
}
|
return result;
|
}
|
|
// https://software.intel.com/sites/landingpage/IntrinsicsGuide
|
void gemm_nn(int M, int N, int K, float ALPHA,
|
float *A, int lda,
|
float *B, int ldb,
|
float *C, int ldc)
|
{
|
int i, j, k;
|
if (is_fma_avx() == 1) { // AVX
|
for (i = 0; i < M; ++i) {
|
for (k = 0; k < K; ++k) {
|
float A_PART = ALPHA*A[i*lda + k];
|
__m256 a256, b256, c256, result256; // AVX
|
a256 = _mm256_set1_ps(A_PART);
|
for (j = 0; j < N - 8; j += 8) {
|
b256 = _mm256_loadu_ps(&B[k*ldb + j]);
|
c256 = _mm256_loadu_ps(&C[i*ldc + j]);
|
// FMA - Intel Haswell (2013), AMD Piledriver (2012)
|
//result256 = _mm256_fmadd_ps(a256, b256, c256);
|
result256 = _mm256_mul_ps(a256, b256);
|
result256 = _mm256_add_ps(result256, c256);
|
_mm256_storeu_ps(&C[i*ldc + j], result256);
|
}
|
|
int prev_end = (N % 8 == 0) ? (N - 8) : (N / 8) * 8;
|
for (j = prev_end; j < N; ++j)
|
C[i*ldc + j] += A_PART*B[k*ldb + j];
|
}
|
}
|
}
|
else {
|
for (i = 0; i < M; ++i) {
|
for (k = 0; k < K; ++k) {
|
register float A_PART = ALPHA*A[i*lda + k];
|
for (j = 0; j < N; ++j) {
|
C[i*ldc + j] += A_PART*B[k*ldb + j];
|
}
|
/* // SSE
|
__m128 a128, b128, c128, result128; // SSE
|
a128 = _mm_set1_ps(A_PART);
|
for (j = 0; j < N - 4; j += 4) {
|
b128 = _mm_loadu_ps(&B[k*ldb + j]);
|
c128 = _mm_loadu_ps(&C[i*ldc + j]);
|
//result128 = _mm_fmadd_ps(a128, b128, c128);
|
result128 = _mm_mul_ps(a128, b128);
|
result128 = _mm_add_ps(result128, c128);
|
_mm_storeu_ps(&C[i*ldc + j], result128);
|
}
|
|
int prev_end = (N % 4 == 0) ? (N - 4) : (N / 4) * 4;
|
for (j = prev_end; j < N; ++j){
|
C[i*ldc + j] += A_PART*B[k*ldb + j];
|
}
|
*/
|
}
|
}
|
}
|
}
|
|
|
// http://graphics.stanford.edu/~seander/bithacks.html
|
// https://stackoverflow.com/questions/17354971/fast-counting-the-number-of-set-bits-in-m128i-register
|
|
// 2 x faster than popcnt: https://arxiv.org/pdf/1611.07612.pdf
|
|
static inline int popcnt128(__m128i n) {
|
const __m128i n_hi = _mm_unpackhi_epi64(n, n);
|
#ifdef _MSC_VER
|
return __popcnt64(_mm_cvtsi128_si64(n)) + __popcnt64(_mm_cvtsi128_si64(n_hi));
|
#else
|
return __popcntq(_mm_cvtsi128_si64(n)) + __popcntq(_mm_cvtsi128_si64(n_hi));
|
#endif
|
}
|
|
static inline int popcnt256(__m256i n) {
|
return popcnt128(_mm256_extractf128_si256(n, 0)) + popcnt128(_mm256_extractf128_si256(n, 1));
|
}
|
|
void gemm_nn_custom_bin_mean_transposed(int M, int N, int K, float ALPHA_UNUSED,
|
unsigned char *A, int lda,
|
unsigned char *B, int ldb,
|
float *C, int ldc, float *mean_arr)
|
{
|
__m256i all_1 = _mm256_set1_epi8(255);
|
int i, j, k, h;
|
|
#pragma omp parallel for
|
for (i = 0; i < M; ++i) { // l.n - filters [16 - 55 - 1024]
|
float mean_val = mean_arr[i];
|
|
for (j = 0; j < N; ++j) { // out_h*out_w - one channel output size [169 - 173056]
|
int count = 0;
|
const int bit_step = 256;
|
|
for (k = 0; k < K; k += bit_step) { // l.size*l.size*l.c - one filter size [27 - 9216]
|
|
//__m128i a_bit128 = _mm_loadu_si128((__m128i *)(A + (i*lda + k) / 8));
|
//__m128i b_bit128 = _mm_loadu_si128((__m128i *)(B + (j*ldb + k) / 8));
|
//__m128i xor128 = _mm_xor_si128(a_bit128, b_bit128);
|
//__m128i c_bit128 = _mm_andnot_si128(xor128, all_1);
|
//int tmp_count = popcnt128(c_bit128);
|
|
__m256i a_bit256 = _mm256_loadu_si256((__m256i *)(A + (i*lda + k) / 8));
|
__m256i b_bit256 = _mm256_loadu_si256((__m256i *)(B + (j*ldb + k) / 8));
|
__m256i xor256 = _mm256_xor_si256(a_bit256, b_bit256);
|
__m256i c_bit256 = _mm256_andnot_si256(xor256, all_1); //we can do NOT for wegihts once and do not do this NOT
|
int tmp_count = popcnt256(c_bit256);
|
|
if (K - k < bit_step) tmp_count = tmp_count - (bit_step - (K - k)); // remove extra bits
|
count += tmp_count;
|
//binary_int64_printf(c_bit64);
|
//printf(", count = %d \n\n", tmp_count);
|
}
|
|
C[i*ldc + j] = (2 * count - K) * mean_val;
|
}
|
}
|
}
|
|
|
void float_to_bit(float *src, unsigned char *dst, size_t size)
|
{
|
size_t dst_size = size / 8 + 1;
|
memset(dst, 0, dst_size);
|
|
size_t i;
|
__m128i all128_0 = _mm_set_epi32(0, 0, 0, 0);
|
__m256 all256_0 = _mm256_set1_ps(0);
|
__m256i bits_asc = _mm256_set_epi32(1, 2, 4, 8, 16, 32, 64, 128);
|
//for(i = 0; i < 8; ++i) bits_asc.m256i_i32[i] = 1 << i;
|
|
for (i = 0; i < size; i+=8)
|
{
|
__m256 src256 = _mm256_loadu_ps((__m256i *)(&src[i])); // load 256 bits
|
__m256 result256 = _mm256_cmp_ps(src256, all256_0, _CMP_GT_OS); // compare dst[i] = (float[i] > 0)
|
|
__m256i bits256 = _mm256_castps_si256(result256); // floats to ints32
|
__m256i and256 = _mm256_and_si256(bits256, bits_asc); // bitwise and
|
|
// sum all elements from single and256
|
__m128i tmp128 = _mm_hadd_epi32(_mm256_extractf128_si256(and256, 0), _mm256_extractf128_si256(and256, 1));
|
tmp128 = _mm_hadd_epi32(tmp128, all128_0);
|
tmp128 = _mm_hadd_epi32(tmp128, all128_0);
|
|
dst[i / 8] = tmp128.m128i_i32[0];
|
}
|
// int _mm256_movemask_epi8 (__m256i a)
|
}
|
|
#else
|
|
void gemm_nn(int M, int N, int K, float ALPHA,
|
float *A, int lda,
|
float *B, int ldb,
|
float *C, int ldc)
|
{
|
int i, j, k;
|
for (i = 0; i < M; ++i) {
|
for (k = 0; k < K; ++k) {
|
register float A_PART = ALPHA*A[i*lda + k];
|
for (j = 0; j < N; ++j) {
|
C[i*ldc + j] += A_PART*B[k*ldb + j];
|
}
|
}
|
}
|
}
|
|
void gemm_nn_custom_bin_mean_transposed(int M, int N, int K, float ALPHA_UNUSED,
|
unsigned char *A, int lda,
|
unsigned char *B, int ldb,
|
float *C, int ldc, float *mean_arr)
|
{
|
int i, j, k, h;
|
|
#pragma omp parallel for
|
for (i = 0; i < M; ++i) { // l.n - filters [16 - 55 - 1024]
|
float mean_val = mean_arr[i];
|
|
for (j = 0; j < N; ++j) { // out_h*out_w - one channel output size [169 - 173056]
|
int count = 0;
|
|
for (k = 0; k < K; k += 64) { // l.size*l.size*l.c - one filter size [27 - 9216]
|
uint64_t a_bit64 = *((uint64_t *)(A + (i*lda + k) / 8));
|
uint64_t b_bit64 = *((uint64_t *)(B + (j*ldb + k) / 8));
|
uint64_t c_bit64 = xnor_int64(a_bit64, b_bit64);
|
|
#ifdef WIN32
|
int tmp_count = __popcnt64(c_bit64);
|
#else
|
int tmp_count = __builtin_popcountll(c_bit64);
|
#endif
|
|
if (K - k < 64) tmp_count = tmp_count - (64 - (K - k)); // remove extra bits
|
count += tmp_count;
|
//binary_int64_printf(c_bit64);
|
//printf(", count = %d \n\n", tmp_count);
|
}
|
|
C[i*ldc + j] = (2 * count - K) * mean_val;
|
}
|
}
|
}
|
|
void float_to_bit(float *src, unsigned char *dst, size_t size)
|
{
|
size_t dst_size = size / 8 + 1;
|
memset(dst, 0, dst_size);
|
|
size_t i;
|
char *byte_arr = calloc(size, sizeof(char));
|
for (i = 0; i < size; ++i) {
|
if (src[i] > 0) byte_arr[i] = 1;
|
}
|
|
//for (i = 0; i < size; ++i) {
|
// dst[i / 8] |= byte_arr[i] << (i % 8);
|
//}
|
|
for (i = 0; i < size; i += 8) {
|
char dst_tmp = 0;
|
dst_tmp |= byte_arr[i + 0] << 0;
|
dst_tmp |= byte_arr[i + 1] << 1;
|
dst_tmp |= byte_arr[i + 2] << 2;
|
dst_tmp |= byte_arr[i + 3] << 3;
|
dst_tmp |= byte_arr[i + 4] << 4;
|
dst_tmp |= byte_arr[i + 5] << 5;
|
dst_tmp |= byte_arr[i + 6] << 6;
|
dst_tmp |= byte_arr[i + 7] << 7;
|
dst[i / 8] = dst_tmp;
|
}
|
free(byte_arr);
|
}
|
#endif // __x86_64
|
|
void gemm_nt(int M, int N, int K, float ALPHA,
|
float *A, int lda,
|
float *B, int ldb,
|
float *C, int ldc)
|
{
|
int i,j,k;
|
for(i = 0; i < M; ++i){
|
for(j = 0; j < N; ++j){
|
register float sum = 0;
|
for(k = 0; k < K; ++k){
|
sum += ALPHA*A[i*lda+k]*B[j*ldb + k];
|
}
|
C[i*ldc+j] += sum;
|
}
|
}
|
}
|
|
void gemm_tn(int M, int N, int K, float ALPHA,
|
float *A, int lda,
|
float *B, int ldb,
|
float *C, int ldc)
|
{
|
int i,j,k;
|
for(i = 0; i < M; ++i){
|
for(k = 0; k < K; ++k){
|
register float A_PART = ALPHA*A[k*lda+i];
|
for(j = 0; j < N; ++j){
|
C[i*ldc+j] += A_PART*B[k*ldb+j];
|
}
|
}
|
}
|
}
|
|
void gemm_tt(int M, int N, int K, float ALPHA,
|
float *A, int lda,
|
float *B, int ldb,
|
float *C, int ldc)
|
{
|
int i,j,k;
|
for(i = 0; i < M; ++i){
|
for(j = 0; j < N; ++j){
|
register float sum = 0;
|
for(k = 0; k < K; ++k){
|
sum += ALPHA*A[i+k*lda]*B[k+j*ldb];
|
}
|
C[i*ldc+j] += sum;
|
}
|
}
|
}
|
|
|
void gemm_cpu(int TA, int TB, int M, int N, int K, float ALPHA,
|
float *A, int lda,
|
float *B, int ldb,
|
float BETA,
|
float *C, int ldc)
|
{
|
//printf("cpu: %d %d %d %d %d %f %d %d %f %d\n",TA, TB, M, N, K, ALPHA, lda, ldb, BETA, ldc);
|
if (BETA != 1){
|
int i, j;
|
for(i = 0; i < M; ++i){
|
for(j = 0; j < N; ++j){
|
C[i*ldc + j] *= BETA;
|
}
|
}
|
}
|
|
int t;
|
#pragma omp parallel for
|
for (t = 0; t < M; ++t) {
|
if (!TA && !TB)
|
gemm_nn(1, N, K, ALPHA, A + t*lda, lda, B, ldb, C + t*ldc, ldc);
|
else if (TA && !TB)
|
gemm_tn(1, N, K, ALPHA, A + t, lda, B, ldb, C + t*ldc, ldc);
|
else if (!TA && TB)
|
gemm_nt(1, N, K, ALPHA, A + t*lda, lda, B, ldb, C + t*ldc, ldc);
|
else
|
gemm_tt(1, N, K, ALPHA, A + t, lda, B, ldb, C + t*ldc, ldc);
|
}
|
}
|
|
#ifdef GPU
|
|
#include <math.h>
|
|
void gemm_ongpu(int TA, int TB, int M, int N, int K, float ALPHA,
|
float *A_gpu, int lda,
|
float *B_gpu, int ldb,
|
float BETA,
|
float *C_gpu, int ldc)
|
{
|
cublasHandle_t handle = blas_handle();
|
cudaError_t stream_status = cublasSetStream(handle, get_cuda_stream());
|
cudaError_t status = cublasSgemm(handle, (TB ? CUBLAS_OP_T : CUBLAS_OP_N),
|
(TA ? CUBLAS_OP_T : CUBLAS_OP_N), N, M, K, &ALPHA, B_gpu, ldb, A_gpu, lda, &BETA, C_gpu, ldc);
|
check_error(status);
|
}
|
|
void gemm_gpu(int TA, int TB, int M, int N, int K, float ALPHA,
|
float *A, int lda,
|
float *B, int ldb,
|
float BETA,
|
float *C, int ldc)
|
{
|
float *A_gpu = cuda_make_array(A, (TA ? lda*K:lda*M));
|
float *B_gpu = cuda_make_array(B, (TB ? ldb*N : ldb*K));
|
float *C_gpu = cuda_make_array(C, ldc*M);
|
|
gemm_ongpu(TA, TB, M, N, K, ALPHA, A_gpu, lda, B_gpu, ldb, BETA, C_gpu, ldc);
|
|
cuda_pull_array(C_gpu, C, ldc*M);
|
cuda_free(A_gpu);
|
cuda_free(B_gpu);
|
cuda_free(C_gpu);
|
}
|
|
#include <stdio.h>
|
#include <stdlib.h>
|
#include <string.h>
|
#include <time.h>
|
|
void time_gpu_random_matrix(int TA, int TB, int m, int k, int n)
|
{
|
float *a;
|
if(!TA) a = random_matrix(m,k);
|
else a = random_matrix(k,m);
|
int lda = (!TA)?k:m;
|
float *b;
|
if(!TB) b = random_matrix(k,n);
|
else b = random_matrix(n,k);
|
int ldb = (!TB)?n:k;
|
|
float *c = random_matrix(m,n);
|
int i;
|
clock_t start = clock(), end;
|
for(i = 0; i<32; ++i){
|
gemm_gpu(TA,TB,m,n,k,1,a,lda,b,ldb,1,c,n);
|
}
|
end = clock();
|
printf("Matrix Multiplication %dx%d * %dx%d, TA=%d, TB=%d: %lf s\n",m,k,k,n, TA, TB, (float)(end-start)/CLOCKS_PER_SEC);
|
free(a);
|
free(b);
|
free(c);
|
}
|
|
void time_ongpu(int TA, int TB, int m, int k, int n)
|
{
|
int iter = 10;
|
float *a = random_matrix(m,k);
|
float *b = random_matrix(k,n);
|
|
int lda = (!TA)?k:m;
|
int ldb = (!TB)?n:k;
|
|
float *c = random_matrix(m,n);
|
|
float *a_cl = cuda_make_array(a, m*k);
|
float *b_cl = cuda_make_array(b, k*n);
|
float *c_cl = cuda_make_array(c, m*n);
|
|
int i;
|
clock_t start = clock(), end;
|
for(i = 0; i<iter; ++i){
|
gemm_ongpu(TA,TB,m,n,k,1,a_cl,lda,b_cl,ldb,1,c_cl,n);
|
cudaThreadSynchronize();
|
}
|
double flop = ((double)m)*n*(2.*k + 2.)*iter;
|
double gflop = flop/pow(10., 9);
|
end = clock();
|
double seconds = sec(end-start);
|
printf("Matrix Multiplication %dx%d * %dx%d, TA=%d, TB=%d: %lf s, %lf GFLOPS\n",m,k,k,n, TA, TB, seconds, gflop/seconds);
|
cuda_free(a_cl);
|
cuda_free(b_cl);
|
cuda_free(c_cl);
|
free(a);
|
free(b);
|
free(c);
|
}
|
|
|
void test_gpu_accuracy(int TA, int TB, int m, int k, int n)
|
{
|
srand(0);
|
float *a;
|
if(!TA) a = random_matrix(m,k);
|
else a = random_matrix(k,m);
|
int lda = (!TA)?k:m;
|
float *b;
|
if(!TB) b = random_matrix(k,n);
|
else b = random_matrix(n,k);
|
int ldb = (!TB)?n:k;
|
|
float *c = random_matrix(m,n);
|
float *c_gpu = random_matrix(m,n);
|
memset(c, 0, m*n*sizeof(float));
|
memset(c_gpu, 0, m*n*sizeof(float));
|
int i;
|
//pm(m,k,b);
|
gemm_gpu(TA,TB,m,n,k,1,a,lda,b,ldb,1,c_gpu,n);
|
//printf("GPU\n");
|
//pm(m, n, c_gpu);
|
|
gemm_cpu(TA,TB,m,n,k,1,a,lda,b,ldb,1,c,n);
|
//printf("\n\nCPU\n");
|
//pm(m, n, c);
|
double sse = 0;
|
for(i = 0; i < m*n; ++i) {
|
//printf("%f %f\n", c[i], c_gpu[i]);
|
sse += pow(c[i]-c_gpu[i], 2);
|
}
|
printf("Matrix Multiplication %dx%d * %dx%d, TA=%d, TB=%d: %g SSE\n",m,k,k,n, TA, TB, sse/(m*n));
|
free(a);
|
free(b);
|
free(c);
|
free(c_gpu);
|
}
|
|
int test_gpu_blas()
|
{
|
/*
|
test_gpu_accuracy(0,0,10,576,75);
|
|
test_gpu_accuracy(0,0,17,10,10);
|
test_gpu_accuracy(1,0,17,10,10);
|
test_gpu_accuracy(0,1,17,10,10);
|
test_gpu_accuracy(1,1,17,10,10);
|
|
test_gpu_accuracy(0,0,1000,10,100);
|
test_gpu_accuracy(1,0,1000,10,100);
|
test_gpu_accuracy(0,1,1000,10,100);
|
test_gpu_accuracy(1,1,1000,10,100);
|
|
test_gpu_accuracy(0,0,10,10,10);
|
|
time_ongpu(0,0,64,2916,363);
|
time_ongpu(0,0,64,2916,363);
|
time_ongpu(0,0,64,2916,363);
|
time_ongpu(0,0,192,729,1600);
|
time_ongpu(0,0,384,196,1728);
|
time_ongpu(0,0,256,196,3456);
|
time_ongpu(0,0,256,196,2304);
|
time_ongpu(0,0,128,4096,12544);
|
time_ongpu(0,0,128,4096,4096);
|
*/
|
time_ongpu(0,0,64,75,12544);
|
time_ongpu(0,0,64,75,12544);
|
time_ongpu(0,0,64,75,12544);
|
time_ongpu(0,0,64,576,12544);
|
time_ongpu(0,0,256,2304,784);
|
time_ongpu(1,1,2304,256,784);
|
time_ongpu(0,0,512,4608,196);
|
time_ongpu(1,1,4608,512,196);
|
|
return 0;
|
}
|
#endif
|