extern "C" {
|
#include <stdio.h>
|
#include <time.h>
|
|
#include "network.h"
|
#include "image.h"
|
#include "data.h"
|
#include "utils.h"
|
#include "params.h"
|
|
#include "crop_layer.h"
|
#include "connected_layer.h"
|
#include "detection_layer.h"
|
#include "convolutional_layer.h"
|
#include "deconvolutional_layer.h"
|
#include "maxpool_layer.h"
|
#include "cost_layer.h"
|
#include "normalization_layer.h"
|
#include "softmax_layer.h"
|
#include "dropout_layer.h"
|
#include "route_layer.h"
|
}
|
|
float * get_network_output_gpu_layer(network net, int i);
|
float * get_network_delta_gpu_layer(network net, int i);
|
float * get_network_output_gpu(network net);
|
|
void forward_network_gpu(network net, network_state state)
|
{
|
int i;
|
for(i = 0; i < net.n; ++i){
|
if(net.types[i] == CONVOLUTIONAL){
|
forward_convolutional_layer_gpu(*(convolutional_layer *)net.layers[i], state);
|
}
|
else if(net.types[i] == DECONVOLUTIONAL){
|
forward_deconvolutional_layer_gpu(*(deconvolutional_layer *)net.layers[i], state);
|
}
|
else if(net.types[i] == COST){
|
forward_cost_layer_gpu(*(cost_layer *)net.layers[i], state);
|
}
|
else if(net.types[i] == CONNECTED){
|
forward_connected_layer_gpu(*(connected_layer *)net.layers[i], state);
|
}
|
else if(net.types[i] == DETECTION){
|
forward_detection_layer_gpu(*(detection_layer *)net.layers[i], state);
|
}
|
else if(net.types[i] == MAXPOOL){
|
forward_maxpool_layer_gpu(*(maxpool_layer *)net.layers[i], state);
|
}
|
else if(net.types[i] == SOFTMAX){
|
forward_softmax_layer_gpu(*(softmax_layer *)net.layers[i], state);
|
}
|
else if(net.types[i] == DROPOUT){
|
forward_dropout_layer_gpu(*(dropout_layer *)net.layers[i], state);
|
}
|
else if(net.types[i] == CROP){
|
forward_crop_layer_gpu(*(crop_layer *)net.layers[i], state);
|
}
|
else if(net.types[i] == ROUTE){
|
forward_route_layer_gpu(*(route_layer *)net.layers[i], net);
|
}
|
state.input = get_network_output_gpu_layer(net, i);
|
}
|
}
|
|
void backward_network_gpu(network net, network_state state)
|
{
|
int i;
|
float * original_input = state.input;
|
for(i = net.n-1; i >= 0; --i){
|
if(i == 0){
|
state.input = original_input;
|
state.delta = 0;
|
}else{
|
state.input = get_network_output_gpu_layer(net, i-1);
|
state.delta = get_network_delta_gpu_layer(net, i-1);
|
}
|
|
if(net.types[i] == CONVOLUTIONAL){
|
backward_convolutional_layer_gpu(*(convolutional_layer *)net.layers[i], state);
|
}
|
else if(net.types[i] == DECONVOLUTIONAL){
|
backward_deconvolutional_layer_gpu(*(deconvolutional_layer *)net.layers[i], state);
|
}
|
else if(net.types[i] == COST){
|
backward_cost_layer_gpu(*(cost_layer *)net.layers[i], state);
|
}
|
else if(net.types[i] == CONNECTED){
|
backward_connected_layer_gpu(*(connected_layer *)net.layers[i], state);
|
}
|
else if(net.types[i] == DETECTION){
|
backward_detection_layer_gpu(*(detection_layer *)net.layers[i], state);
|
}
|
else if(net.types[i] == MAXPOOL){
|
backward_maxpool_layer_gpu(*(maxpool_layer *)net.layers[i], state);
|
}
|
else if(net.types[i] == DROPOUT){
|
backward_dropout_layer_gpu(*(dropout_layer *)net.layers[i], state);
|
}
|
else if(net.types[i] == SOFTMAX){
|
backward_softmax_layer_gpu(*(softmax_layer *)net.layers[i], state);
|
}
|
else if(net.types[i] == ROUTE){
|
backward_route_layer_gpu(*(route_layer *)net.layers[i], net);
|
}
|
}
|
}
|
|
void update_network_gpu(network net)
|
{
|
int i;
|
int update_batch = net.batch*net.subdivisions;
|
for(i = 0; i < net.n; ++i){
|
if(net.types[i] == CONVOLUTIONAL){
|
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
update_convolutional_layer_gpu(layer, update_batch, net.learning_rate, net.momentum, net.decay);
|
}
|
else if(net.types[i] == DECONVOLUTIONAL){
|
deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
|
update_deconvolutional_layer_gpu(layer, net.learning_rate, net.momentum, net.decay);
|
}
|
else if(net.types[i] == CONNECTED){
|
connected_layer layer = *(connected_layer *)net.layers[i];
|
update_connected_layer_gpu(layer, update_batch, net.learning_rate, net.momentum, net.decay);
|
}
|
}
|
}
|
|
float * get_network_output_gpu_layer(network net, int i)
|
{
|
if(net.types[i] == CONVOLUTIONAL){
|
return ((convolutional_layer *)net.layers[i]) -> output_gpu;
|
}
|
else if(net.types[i] == DECONVOLUTIONAL){
|
return ((deconvolutional_layer *)net.layers[i]) -> output_gpu;
|
}
|
else if(net.types[i] == DETECTION){
|
return ((detection_layer *)net.layers[i]) -> output_gpu;
|
}
|
else if(net.types[i] == CONNECTED){
|
return ((connected_layer *)net.layers[i]) -> output_gpu;
|
}
|
else if(net.types[i] == MAXPOOL){
|
return ((maxpool_layer *)net.layers[i]) -> output_gpu;
|
}
|
else if(net.types[i] == CROP){
|
return ((crop_layer *)net.layers[i]) -> output_gpu;
|
}
|
else if(net.types[i] == SOFTMAX){
|
return ((softmax_layer *)net.layers[i]) -> output_gpu;
|
}
|
else if(net.types[i] == ROUTE){
|
return ((route_layer *)net.layers[i]) -> output_gpu;
|
}
|
else if(net.types[i] == DROPOUT){
|
return get_network_output_gpu_layer(net, i-1);
|
}
|
return 0;
|
}
|
|
float * get_network_delta_gpu_layer(network net, int i)
|
{
|
if(net.types[i] == CONVOLUTIONAL){
|
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
return layer.delta_gpu;
|
}
|
else if(net.types[i] == DETECTION){
|
detection_layer layer = *(detection_layer *)net.layers[i];
|
return layer.delta_gpu;
|
}
|
else if(net.types[i] == DECONVOLUTIONAL){
|
deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
|
return layer.delta_gpu;
|
}
|
else if(net.types[i] == CONNECTED){
|
connected_layer layer = *(connected_layer *)net.layers[i];
|
return layer.delta_gpu;
|
}
|
else if(net.types[i] == MAXPOOL){
|
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
return layer.delta_gpu;
|
}
|
else if(net.types[i] == ROUTE){
|
route_layer layer = *(route_layer *)net.layers[i];
|
return layer.delta_gpu;
|
}
|
else if(net.types[i] == SOFTMAX){
|
softmax_layer layer = *(softmax_layer *)net.layers[i];
|
return layer.delta_gpu;
|
} else if(net.types[i] == DROPOUT){
|
if(i == 0) return 0;
|
return get_network_delta_gpu_layer(net, i-1);
|
}
|
return 0;
|
}
|
|
float train_network_datum_gpu(network net, float *x, float *y)
|
{
|
network_state state;
|
int x_size = get_network_input_size(net)*net.batch;
|
int y_size = get_network_output_size(net)*net.batch;
|
if(!*net.input_gpu){
|
*net.input_gpu = cuda_make_array(x, x_size);
|
*net.truth_gpu = cuda_make_array(y, y_size);
|
}else{
|
cuda_push_array(*net.input_gpu, x, x_size);
|
cuda_push_array(*net.truth_gpu, y, y_size);
|
}
|
state.input = *net.input_gpu;
|
state.truth = *net.truth_gpu;
|
state.train = 1;
|
forward_network_gpu(net, state);
|
backward_network_gpu(net, state);
|
float error = get_network_cost(net);
|
if ((net.seen / net.batch) % net.subdivisions == 0) update_network_gpu(net);
|
|
return error;
|
}
|
|
float *get_network_output_layer_gpu(network net, int i)
|
{
|
if(net.types[i] == CONVOLUTIONAL){
|
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
return layer.output;
|
}
|
else if(net.types[i] == DECONVOLUTIONAL){
|
deconvolutional_layer layer = *(deconvolutional_layer *)net.layers[i];
|
return layer.output;
|
}
|
else if(net.types[i] == CONNECTED){
|
connected_layer layer = *(connected_layer *)net.layers[i];
|
cuda_pull_array(layer.output_gpu, layer.output, layer.outputs*layer.batch);
|
return layer.output;
|
}
|
else if(net.types[i] == DETECTION){
|
detection_layer layer = *(detection_layer *)net.layers[i];
|
int outputs = get_detection_layer_output_size(layer);
|
cuda_pull_array(layer.output_gpu, layer.output, outputs*layer.batch);
|
return layer.output;
|
}
|
else if(net.types[i] == MAXPOOL){
|
maxpool_layer layer = *(maxpool_layer *)net.layers[i];
|
return layer.output;
|
}
|
else if(net.types[i] == SOFTMAX){
|
softmax_layer layer = *(softmax_layer *)net.layers[i];
|
pull_softmax_layer_output(layer);
|
return layer.output;
|
}
|
return 0;
|
}
|
|
float *get_network_output_gpu(network net)
|
{
|
int i;
|
for(i = net.n-1; i > 0; --i) if(net.types[i] != COST) break;
|
return get_network_output_layer_gpu(net, i);
|
}
|
|
float *network_predict_gpu(network net, float *input)
|
{
|
int size = get_network_input_size(net) * net.batch;
|
network_state state;
|
state.input = cuda_make_array(input, size);
|
state.truth = 0;
|
state.train = 0;
|
state.delta = 0;
|
forward_network_gpu(net, state);
|
float *out = get_network_output_gpu(net);
|
cuda_free(state.input);
|
return out;
|
}
|