Alexey
2018-01-17 22bf10984cb7940e84db4f086ecbc25d9d5d64b5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
#pragma once
#include <memory>
#include <vector>
#include <deque>
#include <algorithm>
 
#ifdef OPENCV
#include <opencv2/opencv.hpp>           // C++
#include "opencv2/highgui/highgui_c.h"  // C
#include "opencv2/imgproc/imgproc_c.h"  // C
#endif  // OPENCV
 
#ifdef YOLODLL_EXPORTS
#if defined(_MSC_VER)
#define YOLODLL_API __declspec(dllexport) 
#else
#define YOLODLL_API __attribute__((visibility("default")))
#endif
#else
#if defined(_MSC_VER)
#define YOLODLL_API __declspec(dllimport) 
#else
#define YOLODLL_API
#endif
#endif
 
struct bbox_t {
    unsigned int x, y, w, h;    // (x,y) - top-left corner, (w, h) - width & height of bounded box
    float prob;                 // confidence - probability that the object was found correctly
    unsigned int obj_id;        // class of object - from range [0, classes-1]
    unsigned int track_id;      // tracking id for video (0 - untracked, 1 - inf - tracked object)
};
 
struct image_t {
    int h;                      // height
    int w;                      // width
    int c;                      // number of chanels (3 - for RGB)
    float *data;                // pointer to the image data
};
 
 
class Detector {
    std::shared_ptr<void> detector_gpu_ptr;
    std::deque<std::vector<bbox_t>> prev_bbox_vec_deque;
    const int cur_gpu_id;
public:
    float nms = .4;
    bool wait_stream;
 
    YOLODLL_API Detector(std::string cfg_filename, std::string weight_filename, int gpu_id = 0);
    YOLODLL_API ~Detector();
 
    YOLODLL_API std::vector<bbox_t> detect(std::string image_filename, float thresh = 0.2, bool use_mean = false);
    YOLODLL_API std::vector<bbox_t> detect(image_t img, float thresh = 0.2, bool use_mean = false);
    static YOLODLL_API image_t load_image(std::string image_filename);
    static YOLODLL_API void free_image(image_t m);
    YOLODLL_API int get_net_width() const;
    YOLODLL_API int get_net_height() const;
 
    YOLODLL_API std::vector<bbox_t> tracking(std::vector<bbox_t> cur_bbox_vec, int const frames_story = 6);
 
#ifdef OPENCV
    std::vector<bbox_t> detect(cv::Mat mat, float thresh = 0.2, bool use_mean = false)
    {
        if(mat.data == NULL)
            throw std::runtime_error("Image is empty");
        auto image_ptr = mat_to_image_resize(mat);
        return detect_resized(*image_ptr, mat.size(), thresh, use_mean);
    }
 
    std::vector<bbox_t> detect_resized(image_t img, cv::Size init_size, float thresh = 0.2, bool use_mean = false)
    {
        if (img.data == NULL)
            throw std::runtime_error("Image is empty");
        auto detection_boxes = detect(img, thresh, use_mean);
        float wk = (float)init_size.width / img.w, hk = (float)init_size.height / img.h;
        for (auto &i : detection_boxes) i.x *= wk, i.w *= wk, i.y *= hk, i.h *= hk;
        return detection_boxes;
    }
 
    std::shared_ptr<image_t> mat_to_image_resize(cv::Mat mat) const
    {
        if (mat.data == NULL) return std::shared_ptr<image_t>(NULL);
        cv::Mat det_mat;
        cv::resize(mat, det_mat, cv::Size(get_net_width(), get_net_height()));
        return mat_to_image(det_mat);
    }
 
    static std::shared_ptr<image_t> mat_to_image(cv::Mat img_src)
    {
        cv::Mat img;
        cv::cvtColor(img_src, img, cv::COLOR_RGB2BGR);
        std::shared_ptr<image_t> image_ptr(new image_t, [](image_t *img) { free_image(*img); delete img; });
        std::shared_ptr<IplImage> ipl_small = std::make_shared<IplImage>(img);
        *image_ptr = ipl_to_image(ipl_small.get());
        return image_ptr;
    }
 
private:
 
    static image_t ipl_to_image(IplImage* src)
    {
        unsigned char *data = (unsigned char *)src->imageData;
        int h = src->height;
        int w = src->width;
        int c = src->nChannels;
        int step = src->widthStep;
        image_t out = make_image_custom(w, h, c);
        int count = 0;
 
        for (int k = 0; k < c; ++k) {
            for (int i = 0; i < h; ++i) {
                int i_step = i*step;
                for (int j = 0; j < w; ++j) {
                    out.data[count++] = data[i_step + j*c + k] / 255.;
                }
            }
        }
 
        return out;
    }
 
    static image_t make_empty_image(int w, int h, int c)
    {
        image_t out;
        out.data = 0;
        out.h = h;
        out.w = w;
        out.c = c;
        return out;
    }
 
    static image_t make_image_custom(int w, int h, int c)
    {
        image_t out = make_empty_image(w, h, c);
        out.data = (float *)calloc(h*w*c, sizeof(float));
        return out;
    }
 
#endif  // OPENCV
 
};
 
 
#if defined(TRACK_OPTFLOW) && defined(OPENCV)
 
#include <opencv2/cudaoptflow.hpp>
#include <opencv2/cudaimgproc.hpp>
#include <opencv2/cudaarithm.hpp>
#include <opencv2/core/cuda.hpp>
 
class Tracker_optflow {
public:
    const int gpu_count;
    const int gpu_id;
 
 
    Tracker_optflow(int _gpu_id = 0) : gpu_count(cv::cuda::getCudaEnabledDeviceCount()), gpu_id(std::min(_gpu_id, gpu_count-1))
    {
        int const old_gpu_id = cv::cuda::getDevice();
        cv::cuda::setDevice(gpu_id);
 
        stream = cv::cuda::Stream();
 
        sync_PyrLKOpticalFlow_gpu = cv::cuda::SparsePyrLKOpticalFlow::create();
        sync_PyrLKOpticalFlow_gpu->setWinSize(cv::Size(21, 21));    // 15, 21, 31
        sync_PyrLKOpticalFlow_gpu->setMaxLevel(3);      // +- 3 pt
        sync_PyrLKOpticalFlow_gpu->setNumIters(2000);   // def: 30
 
        cv::cuda::setDevice(old_gpu_id);
    }
 
    // just to avoid extra allocations
    cv::cuda::GpuMat src_mat_gpu;
    cv::cuda::GpuMat dst_mat_gpu, dst_grey_gpu;
    cv::cuda::GpuMat tmp_grey_gpu;
    cv::cuda::GpuMat prev_pts_flow_gpu, cur_pts_flow_gpu;
    cv::cuda::GpuMat status_gpu, err_gpu;
 
    cv::cuda::GpuMat src_grey_gpu;  // used in both functions
    cv::Ptr<cv::cuda::SparsePyrLKOpticalFlow> sync_PyrLKOpticalFlow_gpu;
    cv::cuda::Stream stream;
 
    void update_tracking_flow(cv::Mat src_mat)
    {
        int const old_gpu_id = cv::cuda::getDevice();
        if (old_gpu_id != gpu_id)
            cv::cuda::setDevice(gpu_id);
 
        if (src_mat.channels() == 3) {
            if (src_mat_gpu.cols == 0) {
                src_mat_gpu = cv::cuda::GpuMat(src_mat.size(), src_mat.type());
                src_grey_gpu = cv::cuda::GpuMat(src_mat.size(), CV_8UC1);
            }
 
            src_mat_gpu.upload(src_mat, stream);
            cv::cuda::cvtColor(src_mat_gpu, src_grey_gpu, CV_BGR2GRAY, 0, stream);
        }
        if (old_gpu_id != gpu_id)
            cv::cuda::setDevice(old_gpu_id);
    }
 
 
    std::vector<bbox_t> tracking_flow(cv::Mat dst_mat, std::vector<bbox_t> cur_bbox_vec)
    {
        if (sync_PyrLKOpticalFlow_gpu.empty()) {
            std::cout << "sync_PyrLKOpticalFlow_gpu isn't initialized \n";
            return cur_bbox_vec;
        }
 
        int const old_gpu_id = cv::cuda::getDevice();
        if(old_gpu_id != gpu_id)
            cv::cuda::setDevice(gpu_id);
 
        if (dst_mat_gpu.cols == 0) {
            dst_mat_gpu = cv::cuda::GpuMat(dst_mat.size(), dst_mat.type());
            dst_grey_gpu = cv::cuda::GpuMat(dst_mat.size(), CV_8UC1);
            tmp_grey_gpu = cv::cuda::GpuMat(dst_mat.size(), CV_8UC1);
        }
 
        dst_mat_gpu.upload(dst_mat, stream);
 
 
        cv::cuda::cvtColor(dst_mat_gpu, dst_grey_gpu, CV_BGR2GRAY, 0, stream);
 
        if (src_grey_gpu.rows != dst_grey_gpu.rows || src_grey_gpu.cols != dst_grey_gpu.cols) {
            stream.waitForCompletion();
            src_grey_gpu = dst_grey_gpu.clone();
            cv::cuda::setDevice(old_gpu_id);
            return cur_bbox_vec;
        }
 
        cv::Mat prev_pts, prev_pts_flow_cpu, cur_pts_flow_cpu;
 
        for (auto &i : cur_bbox_vec) {
            float x_center = (i.x + i.w / 2);
            float y_center = (i.y + i.h / 2);
            prev_pts.push_back(cv::Point2f(x_center, y_center));
        }
 
 
        if (prev_pts.rows == 0)
            prev_pts_flow_cpu = cv::Mat();
        else
            cv::transpose(prev_pts, prev_pts_flow_cpu);
 
 
        if (prev_pts_flow_gpu.cols < prev_pts_flow_cpu.cols) {
            prev_pts_flow_gpu = cv::cuda::GpuMat(prev_pts_flow_cpu.size(), prev_pts_flow_cpu.type());
            cur_pts_flow_gpu = cv::cuda::GpuMat(prev_pts_flow_cpu.size(), prev_pts_flow_cpu.type());
 
            status_gpu = cv::cuda::GpuMat(prev_pts_flow_cpu.size(), CV_8UC1);
            err_gpu = cv::cuda::GpuMat(prev_pts_flow_cpu.size(), CV_32FC1);
        }
 
        prev_pts_flow_gpu.upload(cv::Mat(prev_pts_flow_cpu), stream);
 
 
        dst_grey_gpu.copyTo(tmp_grey_gpu, stream);
 
        ////sync_PyrLKOpticalFlow_gpu.sparse(src_grey_gpu, dst_grey_gpu, prev_pts_flow_gpu, cur_pts_flow_gpu, status_gpu, &err_gpu);    // OpenCV 2.4.x
        sync_PyrLKOpticalFlow_gpu->calc(src_grey_gpu, dst_grey_gpu, prev_pts_flow_gpu, cur_pts_flow_gpu, status_gpu, err_gpu, stream);  // OpenCV 3.x
 
        cur_pts_flow_gpu.download(cur_pts_flow_cpu, stream);
 
        tmp_grey_gpu.copyTo(src_grey_gpu, stream);
 
        cv::Mat err_cpu, status_cpu;
        err_gpu.download(err_cpu, stream);
        status_gpu.download(status_cpu, stream);
 
        stream.waitForCompletion();
 
        std::vector<bbox_t> result_bbox_vec;
 
        for (size_t i = 0; i < cur_bbox_vec.size(); ++i)
        {
            cv::Point2f cur_key_pt = cur_pts_flow_cpu.at<cv::Point2f>(0, i);
            cv::Point2f prev_key_pt = prev_pts_flow_cpu.at<cv::Point2f>(0, i);
 
            float moved_x = cur_key_pt.x - prev_key_pt.x;
            float moved_y = cur_key_pt.y - prev_key_pt.y;
 
            if (err_cpu.cols > i &&  status_cpu.cols > i)
                if (abs(moved_x) < 100 && abs(moved_y) < 100)
                    //if (err_cpu.at<float>(0, i) < 60 && status_cpu.at<unsigned char>(0, i) != 0)
                    {
                        cur_bbox_vec[i].x += moved_x + 0.5;
                        cur_bbox_vec[i].y += moved_y + 0.5;
                        result_bbox_vec.push_back(cur_bbox_vec[i]);
                    }
        }
 
        if (old_gpu_id != gpu_id)
            cv::cuda::setDevice(old_gpu_id);
 
        return result_bbox_vec;
    }
 
};
#else
 
class Tracker_optflow {};
 
#endif  // defined(TRACK_OPTFLOW) && defined(OPENCV)