#include "detection_layer.h"
|
#include "activations.h"
|
#include "softmax_layer.h"
|
#include "blas.h"
|
#include "cuda.h"
|
#include <stdio.h>
|
#include <stdlib.h>
|
|
int get_detection_layer_locations(detection_layer layer)
|
{
|
return layer.inputs / (layer.classes+layer.coords+layer.rescore);
|
}
|
|
int get_detection_layer_output_size(detection_layer layer)
|
{
|
return get_detection_layer_locations(layer)*(layer.classes+layer.coords);
|
}
|
|
detection_layer *make_detection_layer(int batch, int inputs, int classes, int coords, int rescore)
|
{
|
detection_layer *layer = calloc(1, sizeof(detection_layer));
|
|
layer->batch = batch;
|
layer->inputs = inputs;
|
layer->classes = classes;
|
layer->coords = coords;
|
layer->rescore = rescore;
|
int outputs = get_detection_layer_output_size(*layer);
|
layer->output = calloc(batch*outputs, sizeof(float));
|
layer->delta = calloc(batch*outputs, sizeof(float));
|
#ifdef GPU
|
layer->output_gpu = cuda_make_array(0, batch*outputs);
|
layer->delta_gpu = cuda_make_array(0, batch*outputs);
|
#endif
|
|
fprintf(stderr, "Detection Layer\n");
|
srand(0);
|
|
return layer;
|
}
|
|
void forward_detection_layer(const detection_layer layer, float *in, float *truth)
|
{
|
int in_i = 0;
|
int out_i = 0;
|
int locations = get_detection_layer_locations(layer);
|
int i,j;
|
for(i = 0; i < layer.batch*locations; ++i){
|
int mask = (!truth || !truth[out_i + layer.classes - 1]);
|
float scale = 1;
|
if(layer.rescore) scale = in[in_i++];
|
for(j = 0; j < layer.classes; ++j){
|
layer.output[out_i++] = scale*in[in_i++];
|
}
|
softmax_array(layer.output + out_i - layer.classes, layer.classes, layer.output + out_i - layer.classes);
|
activate_array(layer.output+out_i, layer.coords, SIGMOID);
|
for(j = 0; j < layer.coords; ++j){
|
layer.output[out_i++] = mask*in[in_i++];
|
}
|
//printf("%d\n", mask);
|
//for(j = 0; j < layer.classes+layer.coords; ++j) printf("%f ", layer.output[i*(layer.classes+layer.coords)+j]);
|
//printf ("\n");
|
}
|
}
|
|
void backward_detection_layer(const detection_layer layer, float *in, float *delta)
|
{
|
int locations = get_detection_layer_locations(layer);
|
int i,j;
|
int in_i = 0;
|
int out_i = 0;
|
for(i = 0; i < layer.batch*locations; ++i){
|
float scale = 1;
|
float latent_delta = 0;
|
if(layer.rescore) scale = in[in_i++];
|
for(j = 0; j < layer.classes; ++j){
|
latent_delta += in[in_i]*layer.delta[out_i];
|
delta[in_i++] = scale*layer.delta[out_i++];
|
}
|
|
for(j = 0; j < layer.coords; ++j){
|
delta[in_i++] = layer.delta[out_i++];
|
}
|
gradient_array(in + in_i - layer.coords, layer.coords, SIGMOID, layer.delta + out_i - layer.coords);
|
if(layer.rescore) delta[in_i-layer.coords-layer.classes-layer.rescore] = latent_delta;
|
}
|
}
|
|
#ifdef GPU
|
|
void forward_detection_layer_gpu(const detection_layer layer, float *in, float *truth)
|
{
|
int outputs = get_detection_layer_output_size(layer);
|
float *in_cpu = calloc(layer.batch*layer.inputs, sizeof(float));
|
float *truth_cpu = 0;
|
if(truth){
|
truth_cpu = calloc(layer.batch*outputs, sizeof(float));
|
cuda_pull_array(truth, truth_cpu, layer.batch*outputs);
|
}
|
cuda_pull_array(in, in_cpu, layer.batch*layer.inputs);
|
forward_detection_layer(layer, in_cpu, truth_cpu);
|
cuda_push_array(layer.output_gpu, layer.output, layer.batch*outputs);
|
free(in_cpu);
|
if(truth_cpu) free(truth_cpu);
|
}
|
|
void backward_detection_layer_gpu(detection_layer layer, float *in, float *delta)
|
{
|
int outputs = get_detection_layer_output_size(layer);
|
|
float *in_cpu = calloc(layer.batch*layer.inputs, sizeof(float));
|
float *delta_cpu = calloc(layer.batch*layer.inputs, sizeof(float));
|
|
cuda_pull_array(in, in_cpu, layer.batch*layer.inputs);
|
cuda_pull_array(layer.delta_gpu, layer.delta, layer.batch*outputs);
|
backward_detection_layer(layer, in_cpu, delta_cpu);
|
cuda_push_array(delta, delta_cpu, layer.batch*layer.inputs);
|
|
free(in_cpu);
|
free(delta_cpu);
|
}
|
#endif
|