import cv2
|
import numpy as np
|
import os
|
import sys
|
from operator import itemgetter
|
|
|
# Disclaimer: majority of the basic framework in this file is modified from the following tutorial:
|
# https://www.learnopencv.com/deep-learning-based-object-detection-using-yolov3-with-opencv-python-c/
|
|
|
# Get the names of the output layers
|
def get_outputs_names(net):
|
# Get the names of all the layers in the network
|
layers_names = net.getLayerNames()
|
# Get the names of the output layers, i.e. the layers with unconnected outputs
|
return [layers_names[i[0] - 1] for i in net.getUnconnectedOutLayers()]
|
|
|
# Remove the bounding boxes with low confidence using non-maxima suppression
|
def post_process(frame, outs, thresh_conf, thresh_nms):
|
frame_height = frame.shape[0]
|
frame_width = frame.shape[1]
|
|
# Scan through all the bounding boxes output from the network and keep only the
|
# ones with high confidence scores. Assign the box's class label as the class with the highest score.
|
class_ids = []
|
confidences = []
|
boxes = []
|
for out in outs:
|
for detection in out:
|
scores = detection[5:]
|
class_id = np.argmax(scores)
|
confidence = scores[class_id]
|
if confidence > thresh_conf:
|
center_x = int(detection[0] * frame_width)
|
center_y = int(detection[1] * frame_height)
|
width = int(detection[2] * frame_width)
|
height = int(detection[3] * frame_height)
|
left = int(center_x - width / 2)
|
top = int(center_y - height / 2)
|
class_ids.append(class_id)
|
confidences.append(float(confidence))
|
boxes.append([left, top, width, height])
|
|
# Perform non maximum suppression to eliminate redundant overlapping boxes with lower confidences.
|
indices = [ind[0] for ind in cv2.dnn.NMSBoxes(boxes, confidences, thresh_conf, thresh_nms)]
|
|
ret = [[class_ids[i], confidences[i], boxes[i]] for i in indices]
|
return ret
|
|
|
# Draw the predicted bounding box
|
def draw_pred(frame, class_id, classes, conf, left, top, right, bottom):
|
# Draw a bounding box.
|
cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255))
|
|
label = '%.2f' % conf
|
|
# Get the label for the class name and its confidence
|
if classes:
|
assert (class_id < len(classes))
|
label = '%s:%s' % (classes[class_id], label)
|
|
# Display the label at the top of the bounding box
|
label_size, base_line = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
|
top = max(top, label_size[1])
|
cv2.putText(frame, label, (left, top), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255))
|
|
|
def detect_frame(net, classes, img, thresh_conf=0.5, thresh_nms=0.4, in_dim=(416, 416), display=True, out_path=None):
|
# Create a 4D blob from a frame.
|
blob = cv2.dnn.blobFromImage(img, 1 / 255, in_dim, [0, 0, 0], 1, crop=False)
|
|
# Sets the input to the network
|
net.setInput(blob)
|
|
# Runs the forward pass to get output of the output layers
|
outs = net.forward(get_outputs_names(net))
|
|
# Remove the bounding boxes with low confidence
|
obj_list = post_process(img, outs, thresh_conf, thresh_nms)
|
for obj in obj_list:
|
class_id, confidence, box = obj
|
left, top, width, height = box
|
draw_pred(img, class_id, classes, confidence, left, top, left + width, top + height)
|
|
# Put efficiency information. The function getPerfProfile returns the
|
# overall time for inference(t) and the timings for each of the layers(in layersTimes)
|
t, _ = net.getPerfProfile()
|
label = 'Inference time: %.2f ms' % (t * 1000.0 / cv2.getTickFrequency())
|
cv2.putText(img, label, (0, 15), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255))
|
|
if out_path is not None:
|
cv2.imwrite(out_path, img.astype(np.uint8))
|
if display:
|
cv2.imshow('result', img)
|
cv2.waitKey(0)
|
|
return obj_list
|
|
|
def detect_video(net, classes, capture, thresh_conf=0.5, thresh_nms=0.4, in_dim=(416, 416), display=True, out_path=None):
|
if out_path is not None:
|
vid_writer = cv2.VideoWriter(out_path, cv2.VideoWriter_fourcc('M', 'J', 'P', 'G'), 30,
|
(round(capture.get(cv2.CAP_PROP_FRAME_WIDTH)),
|
round(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))))
|
while True:
|
ret, frame = capture.read()
|
if not ret:
|
# End of video
|
print("End of video. Press any key to exit")
|
cv2.waitKey(0)
|
break
|
obj_list = detect_frame(net, classes, frame, thresh_conf=thresh_conf, thresh_nms=thresh_nms, in_dim=in_dim,
|
display=False, out_path=None)
|
if display:
|
cv2.imshow('result', frame)
|
if out_path is not None:
|
vid_writer.write(frame.astype(np.uint8))
|
cv2.waitKey(1)
|
|
if out_path is not None:
|
vid_writer.release()
|
cv2.destroyAllWindows()
|
|
|
def main():
|
# Specify paths for all necessary files
|
test_path = os.path.abspath('../data/test1.mp4')
|
weight_path = 'weights/second_general/tiny_yolo_final.weights'
|
cfg_path = 'cfg/tiny_yolo.cfg'
|
class_path = "data/obj.names"
|
out_dir = 'out'
|
if not os.path.isfile(test_path):
|
print('The test file %s doesn\'t exist!' % os.path.abspath(test_path))
|
return
|
if not os.path.isfile(weight_path):
|
print('The weight file %s doesn\'t exist!' % os.path.abspath(test_path))
|
return
|
if not os.path.isfile(cfg_path):
|
print('The config file %s doesn\'t exist!' % os.path.abspath(test_path))
|
return
|
if not os.path.isfile(class_path):
|
print('The class file %s doesn\'t exist!' % os.path.abspath(test_path))
|
return
|
|
# Setup
|
# Read class names from text file
|
with open(class_path, 'r') as f:
|
classes = [line.strip() for line in f.readlines()]
|
# Load up the neural net using the config and weights
|
net = cv2.dnn.readNetFromDarknet(cfg_path, weight_path)
|
net.setPreferableBackend(cv2.dnn.DNN_BACKEND_OPENCV)
|
net.setPreferableTarget(cv2.dnn.DNN_TARGET_CPU)
|
|
# Save the detection result if out_dir is provided
|
if out_dir is None or out_dir == '':
|
out_path = None
|
else:
|
out_path = out_dir + '/' + os.path.split(test_path)[1]
|
# Check if test file is image or video
|
test_ext = test_path[test_path.find('.') + 1:]
|
|
if test_ext in ['jpg', 'jpeg', 'bmp', 'png', 'tiff']:
|
img = cv2.imread(test_path)
|
detect_frame(net, classes, img, out_path=out_path)
|
else:
|
capture = cv2.VideoCapture(test_path)
|
detect_video(net, classes, capture, out_path=out_path)
|
capture.release()
|
pass
|
|
|
if __name__ == '__main__':
|
main()
|