import ast
|
import json
|
import os
|
import pandas as pd
|
import re
|
from urllib import request, error
|
|
from config import Config
|
|
"""
|
Note: All codes in this file realies on Scryfall API to aggregate card database and their images.
|
Scryfall API doc is available at: https://scryfall.com/docs/api
|
"""
|
|
|
def fetch_all_cards_text(url='https://api.scryfall.com/cards/search?q=layout:normal+format:modern+lang:en+frame:2003',
|
csv_name=None):
|
"""
|
Given the query URL using Scryfall API, aggregate all card information and convert them from json to table
|
:param url: query URL
|
:param csv_name: path of the csv file to save the result
|
:return: pandas dataframe of the fetch cards
|
"""
|
has_more = True
|
cards = []
|
# get cards dataset as a json from the query
|
while has_more:
|
res_file_dir, http_message = request.urlretrieve(url)
|
with open(res_file_dir, 'r') as res_file:
|
res_json = json.loads(res_file.read())
|
cards += res_json['data']
|
has_more = res_json['has_more']
|
if has_more:
|
url = res_json['next_page']
|
print(len(cards))
|
|
# Convert them into a dataframe, and truncate unnecessary columns
|
df = pd.DataFrame.from_dict(cards)
|
|
if csv_name is not None:
|
#df = df[['artist', 'border_color', 'collector_number', 'color_identity', 'colors', 'flavor_text', 'image_uris',
|
# 'mana_cost', 'legalities', 'name', 'oracle_text', 'rarity', 'type_line', 'set', 'set_name', 'power',
|
# 'toughness']]
|
df.to_csv(csv_name, sep=';') # Comma seperator doesn't work, since some columns are saved as a dict
|
return df
|
|
|
def load_all_cards_text(csv_name):
|
df = pd.read_csv(csv_name, sep=';') # Comma seperator doesn't work, since some columns are saved as a dict
|
return df
|
|
|
def get_valid_filename(s):
|
"""
|
Return the given string converted to a string that can be used for a clean
|
filename. Remove leading and trailing spaces; convert other spaces to
|
underscores; and remove anything that is not an alphanumeric, dash,
|
underscore, or dot.
|
>>> get_valid_filename("john's portrait in 2004.jpg")
|
'johns_portrait_in_2004.jpg'
|
From: https://github.com/django/django/blob/master/django/utils/text.py
|
:param s: input string
|
:return: string of valid filename
|
"""
|
s = str(s).strip().replace(' ', '_')
|
return re.sub(r'(?u)[^-\w.]', '', s)
|
|
|
def fetch_all_cards_image(df, out_dir=None, size='png'):
|
"""
|
Download card images from Scryfall database
|
:param df: pandas dataframe (or series) of cards
|
:param out_dir: path of output directory
|
:param size: Image format given by Scryfall API - 'png', 'large', 'normal', 'small', 'art_crop', 'border_crop'
|
:return:
|
"""
|
if size != 'png':
|
print('Note: this repo has been implemented using only \'png\' size. '
|
'Using %s may result in an unexpected behaviour in other parts of this repo.' % size)
|
if isinstance(df, pd.Series):
|
# df is a single row of card
|
fetch_card_image(df, out_dir, size)
|
else:
|
from concurrent.futures import ThreadPoolExecutor, wait as fwait
|
executor = ThreadPoolExecutor(5)
|
# df is a dataframe containing list of cards
|
arglist = []
|
for ind, row in df.iterrows():
|
arglist.append(executor.submit(fetch_card_image, row, out_dir, size))
|
fwait(arglist)
|
# fetch_card_image(row, out_dir, size)
|
|
|
def fetch_card_image(row, out_dir=None, size='png'):
|
"""
|
Download a card's image from Scryfall database
|
:param row: pandas series including the card's information
|
:param out_dir: path of the output directory
|
:param size: Image format given by Scryfall API - 'png', 'large', 'normal', 'small', 'art_crop', 'border_crop'
|
:return:
|
"""
|
if out_dir is None:
|
s = row['set']
|
if s == 'con':
|
s = 'con__'
|
out_dir = '%s/card_img/%s/%s' % (Config.data_dir, size, s)
|
if not os.path.exists(out_dir):
|
os.makedirs(out_dir)
|
|
# Extract card's name and URL for image accordingly
|
# Double-faced cards have a different format, and results in two separate card images
|
png_urls = []
|
card_names = []
|
if row['layout'] in ['transform', 'double_faced_token']:
|
if isinstance(row['card_faces'], str): # For some reason, dict isn't being parsed in the previous step
|
card_faces = ast.literal_eval(row['card_faces'])
|
else:
|
card_faces = row['card_faces']
|
for i in range(len(card_faces)):
|
png_urls.append(card_faces[i]['image_uris'][size])
|
card_names.append(get_valid_filename(card_faces[i]['name']))
|
else: #if row['layout'] == 'normal':
|
if isinstance(row['image_uris'], str): # For some reason, dict isn't being parsed in the previous step
|
png_urls.append(ast.literal_eval(row['image_uris'])[size])
|
else:
|
png_urls.append(row['image_uris'][size])
|
card_names.append(get_valid_filename(row['name']))
|
|
for i in range(len(png_urls)):
|
img_name = '%s/%s_%s.png' % (out_dir, row['collector_number'], card_names[i])
|
if not os.path.isfile(img_name):
|
request.urlretrieve(png_urls[i], filename=img_name)
|
print(img_name)
|
|
|
def main():
|
# Query card data by each set, then merge them together
|
if not os.path.exists(os.path.join(Config.data_dir, 'csv')):
|
os.mkdir(os.path.join(Config.data_dir, 'csv'))
|
for set_name in Config.all_set_list:
|
set_name_m = set_name
|
if set_name_m == 'con':
|
set_name_m = 'con__'
|
csv_name = '%s/csv/%s.csv' % (Config.data_dir, set_name_m)
|
print(csv_name)
|
if not os.path.isfile(csv_name):
|
df = fetch_all_cards_text(url='https://api.scryfall.com/cards/search?q=set:%s+lang:en' % set_name,
|
csv_name=csv_name)
|
else:
|
df = load_all_cards_text(csv_name)
|
df.sort_values('collector_number')
|
fetch_all_cards_image(df, out_dir='%s/card_img/png/%s' % (Config.data_dir, set_name))
|
|
#df = fetch_all_cards_text(url='https://api.scryfall.com/cards/search?q=layout:normal+lang:en+frame:2003',
|
# csv_name='%s/csv/all.csv' % Config.data_dir)
|
return
|
|
|
if __name__ == '__main__':
|
main()
|