Joseph Redmon
2013-11-13 2db9fbef2bd7d35a547d0018a9850f6b249c524f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
#include <stdio.h>
#include "network.h"
#include "image.h"
#include "data.h"
 
#include "connected_layer.h"
#include "convolutional_layer.h"
#include "maxpool_layer.h"
 
network make_network(int n)
{
    network net;
    net.n = n;
    net.layers = calloc(net.n, sizeof(void *));
    net.types = calloc(net.n, sizeof(LAYER_TYPE));
    return net;
}
 
void forward_network(network net, double *input)
{
    int i;
    for(i = 0; i < net.n; ++i){
        if(net.types[i] == CONVOLUTIONAL){
            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
            forward_convolutional_layer(layer, input);
            input = layer.output;
        }
        else if(net.types[i] == CONNECTED){
            connected_layer layer = *(connected_layer *)net.layers[i];
            forward_connected_layer(layer, input);
            input = layer.output;
        }
        else if(net.types[i] == MAXPOOL){
            maxpool_layer layer = *(maxpool_layer *)net.layers[i];
            forward_maxpool_layer(layer, input);
            input = layer.output;
        }
    }
}
 
void update_network(network net, double step)
{
    int i;
    for(i = 0; i < net.n; ++i){
        if(net.types[i] == CONVOLUTIONAL){
            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
            update_convolutional_layer(layer, step);
        }
        else if(net.types[i] == MAXPOOL){
            //maxpool_layer layer = *(maxpool_layer *)net.layers[i];
        }
        else if(net.types[i] == CONNECTED){
            connected_layer layer = *(connected_layer *)net.layers[i];
            update_connected_layer(layer, step, .3, 0);
        }
    }
}
 
double *get_network_output_layer(network net, int i)
{
    if(net.types[i] == CONVOLUTIONAL){
        convolutional_layer layer = *(convolutional_layer *)net.layers[i];
        return layer.output;
    } else if(net.types[i] == MAXPOOL){
        maxpool_layer layer = *(maxpool_layer *)net.layers[i];
        return layer.output;
    } else if(net.types[i] == CONNECTED){
        connected_layer layer = *(connected_layer *)net.layers[i];
        return layer.output;
    }
    return 0;
}
double *get_network_output(network net)
{
    return get_network_output_layer(net, net.n-1);
}
 
double *get_network_delta_layer(network net, int i)
{
    if(net.types[i] == CONVOLUTIONAL){
        convolutional_layer layer = *(convolutional_layer *)net.layers[i];
        return layer.delta;
    } else if(net.types[i] == MAXPOOL){
        maxpool_layer layer = *(maxpool_layer *)net.layers[i];
        return layer.delta;
    } else if(net.types[i] == CONNECTED){
        connected_layer layer = *(connected_layer *)net.layers[i];
        return layer.delta;
    }
    return 0;
}
 
double *get_network_delta(network net)
{
    return get_network_delta_layer(net, net.n-1);
}
 
void learn_network(network net, double *input)
{
    int i;
    double *prev_input;
    double *prev_delta;
    for(i = net.n-1; i >= 0; --i){
        if(i == 0){
            prev_input = input;
            prev_delta = 0;
        }else{
            prev_input = get_network_output_layer(net, i-1);
            prev_delta = get_network_delta_layer(net, i-1);
        }
        if(net.types[i] == CONVOLUTIONAL){
            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
            learn_convolutional_layer(layer, prev_input);
            if(i != 0) backward_convolutional_layer(layer, prev_input, prev_delta);
        }
        else if(net.types[i] == MAXPOOL){
            //maxpool_layer layer = *(maxpool_layer *)net.layers[i];
        }
        else if(net.types[i] == CONNECTED){
            connected_layer layer = *(connected_layer *)net.layers[i];
            learn_connected_layer(layer, prev_input);
            if(i != 0) backward_connected_layer(layer, prev_input, prev_delta);
        }
    }
}
 
void train_network_batch(network net, batch b)
{
    int i,j;
    int k = get_network_output_size(net);
    int correct = 0;
    for(i = 0; i < b.n; ++i){
        forward_network(net, b.images[i].data);
        image o = get_network_image(net);
        double *output = get_network_output(net);
        double *delta = get_network_delta(net);
        for(j = 0; j < k; ++j){
            //printf("%f %f\n", b.truth[i][j], output[j]);
            delta[j] = b.truth[i][j]-output[j];
            if(fabs(delta[j]) < .5) ++correct;
            //printf("%f\n",  output[j]);
        }
        learn_network(net, b.images[i].data);
        update_network(net, .00001);
    }
    printf("Accuracy: %f\n", (double)correct/b.n);
}
 
int get_network_output_size_layer(network net, int i)
{
    if(net.types[i] == CONVOLUTIONAL){
        convolutional_layer layer = *(convolutional_layer *)net.layers[i];
        image output = get_convolutional_image(layer);
        return output.h*output.w*output.c;
    }
    else if(net.types[i] == MAXPOOL){
        maxpool_layer layer = *(maxpool_layer *)net.layers[i];
        image output = get_maxpool_image(layer);
        return output.h*output.w*output.c;
    }
    else if(net.types[i] == CONNECTED){
        connected_layer layer = *(connected_layer *)net.layers[i];
        return layer.outputs;
    }
    return 0;
}
 
int get_network_output_size(network net)
{
    int i = net.n-1;
    return get_network_output_size_layer(net, i);
}
 
image get_network_image_layer(network net, int i)
{
    if(net.types[i] == CONVOLUTIONAL){
        convolutional_layer layer = *(convolutional_layer *)net.layers[i];
        return get_convolutional_image(layer);
    }
    else if(net.types[i] == MAXPOOL){
        maxpool_layer layer = *(maxpool_layer *)net.layers[i];
        return get_maxpool_image(layer);
    }
    return make_image(0,0,0);
}
 
image get_network_image(network net)
{
    int i;
    for(i = net.n-1; i >= 0; --i){
        image m = get_network_image_layer(net, i);
        if(m.h != 0) return m;
    }
    return make_image(1,1,1);
}
 
void visualize_network(network net)
{
    int i;
    for(i = 0; i < 1; ++i){
        if(net.types[i] == CONVOLUTIONAL){
            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
            visualize_convolutional_layer(layer);
        }
    } 
}