#include "convolutional_layer.h"
|
#include "utils.h"
|
#include "im2col.h"
|
#include "col2im.h"
|
#include "blas.h"
|
#include "gemm.h"
|
#include <stdio.h>
|
#include <time.h>
|
|
int convolutional_out_height(convolutional_layer layer)
|
{
|
int h = layer.h;
|
if (!layer.pad) h -= layer.size;
|
else h -= 1;
|
return h/layer.stride + 1;
|
}
|
|
int convolutional_out_width(convolutional_layer layer)
|
{
|
int w = layer.w;
|
if (!layer.pad) w -= layer.size;
|
else w -= 1;
|
return w/layer.stride + 1;
|
}
|
|
image get_convolutional_image(convolutional_layer layer)
|
{
|
int h,w,c;
|
h = convolutional_out_height(layer);
|
w = convolutional_out_width(layer);
|
c = layer.n;
|
return float_to_image(w,h,c,layer.output);
|
}
|
|
image get_convolutional_delta(convolutional_layer layer)
|
{
|
int h,w,c;
|
h = convolutional_out_height(layer);
|
w = convolutional_out_width(layer);
|
c = layer.n;
|
return float_to_image(w,h,c,layer.delta);
|
}
|
|
convolutional_layer *make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation)
|
{
|
int i;
|
convolutional_layer *layer = calloc(1, sizeof(convolutional_layer));
|
|
layer->h = h;
|
layer->w = w;
|
layer->c = c;
|
layer->n = n;
|
layer->batch = batch;
|
layer->stride = stride;
|
layer->size = size;
|
layer->pad = pad;
|
|
layer->filters = calloc(c*n*size*size, sizeof(float));
|
layer->filter_updates = calloc(c*n*size*size, sizeof(float));
|
|
layer->biases = calloc(n, sizeof(float));
|
layer->bias_updates = calloc(n, sizeof(float));
|
float scale = 1./sqrt(size*size*c);
|
for(i = 0; i < c*n*size*size; ++i) layer->filters[i] = scale*rand_normal();
|
for(i = 0; i < n; ++i){
|
layer->biases[i] = scale;
|
}
|
int out_h = convolutional_out_height(*layer);
|
int out_w = convolutional_out_width(*layer);
|
|
layer->col_image = calloc(out_h*out_w*size*size*c, sizeof(float));
|
layer->output = calloc(layer->batch*out_h * out_w * n, sizeof(float));
|
layer->delta = calloc(layer->batch*out_h * out_w * n, sizeof(float));
|
|
#ifdef GPU
|
layer->filters_gpu = cuda_make_array(layer->filters, c*n*size*size);
|
layer->filter_updates_gpu = cuda_make_array(layer->filter_updates, c*n*size*size);
|
|
layer->biases_gpu = cuda_make_array(layer->biases, n);
|
layer->bias_updates_gpu = cuda_make_array(layer->bias_updates, n);
|
|
layer->col_image_gpu = cuda_make_array(layer->col_image, out_h*out_w*size*size*c);
|
layer->delta_gpu = cuda_make_array(layer->delta, layer->batch*out_h*out_w*n);
|
layer->output_gpu = cuda_make_array(layer->output, layer->batch*out_h*out_w*n);
|
#endif
|
layer->activation = activation;
|
|
fprintf(stderr, "Convolutional Layer: %d x %d x %d image, %d filters -> %d x %d x %d image\n", h,w,c,n, out_h, out_w, n);
|
|
return layer;
|
}
|
|
void resize_convolutional_layer(convolutional_layer *layer, int h, int w)
|
{
|
layer->h = h;
|
layer->w = w;
|
int out_h = convolutional_out_height(*layer);
|
int out_w = convolutional_out_width(*layer);
|
|
layer->col_image = realloc(layer->col_image,
|
out_h*out_w*layer->size*layer->size*layer->c*sizeof(float));
|
layer->output = realloc(layer->output,
|
layer->batch*out_h * out_w * layer->n*sizeof(float));
|
layer->delta = realloc(layer->delta,
|
layer->batch*out_h * out_w * layer->n*sizeof(float));
|
|
#ifdef GPU
|
cuda_free(layer->col_image_gpu);
|
cuda_free(layer->delta_gpu);
|
cuda_free(layer->output_gpu);
|
|
layer->col_image_gpu = cuda_make_array(layer->col_image, out_h*out_w*layer->size*layer->size*layer->c);
|
layer->delta_gpu = cuda_make_array(layer->delta, layer->batch*out_h*out_w*layer->n);
|
layer->output_gpu = cuda_make_array(layer->output, layer->batch*out_h*out_w*layer->n);
|
#endif
|
}
|
|
void bias_output(float *output, float *biases, int batch, int n, int size)
|
{
|
int i,j,b;
|
for(b = 0; b < batch; ++b){
|
for(i = 0; i < n; ++i){
|
for(j = 0; j < size; ++j){
|
output[(b*n + i)*size + j] = biases[i];
|
}
|
}
|
}
|
}
|
|
void backward_bias(float *bias_updates, float *delta, int batch, int n, int size)
|
{
|
int i,b;
|
for(b = 0; b < batch; ++b){
|
for(i = 0; i < n; ++i){
|
bias_updates[i] += sum_array(delta+size*(i+b*n), size);
|
}
|
}
|
}
|
|
|
void forward_convolutional_layer(const convolutional_layer layer, network_state state)
|
{
|
int out_h = convolutional_out_height(layer);
|
int out_w = convolutional_out_width(layer);
|
int i;
|
|
bias_output(layer.output, layer.biases, layer.batch, layer.n, out_h*out_w);
|
|
int m = layer.n;
|
int k = layer.size*layer.size*layer.c;
|
int n = out_h*out_w;
|
|
float *a = layer.filters;
|
float *b = layer.col_image;
|
float *c = layer.output;
|
|
for(i = 0; i < layer.batch; ++i){
|
im2col_cpu(state.input, layer.c, layer.h, layer.w,
|
layer.size, layer.stride, layer.pad, b);
|
gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
|
c += n*m;
|
state.input += layer.c*layer.h*layer.w;
|
}
|
activate_array(layer.output, m*n*layer.batch, layer.activation);
|
}
|
|
void backward_convolutional_layer(convolutional_layer layer, network_state state)
|
{
|
int i;
|
int m = layer.n;
|
int n = layer.size*layer.size*layer.c;
|
int k = convolutional_out_height(layer)*
|
convolutional_out_width(layer);
|
|
gradient_array(layer.output, m*k*layer.batch, layer.activation, layer.delta);
|
backward_bias(layer.bias_updates, layer.delta, layer.batch, layer.n, k);
|
|
if(state.delta) memset(state.delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float));
|
|
for(i = 0; i < layer.batch; ++i){
|
float *a = layer.delta + i*m*k;
|
float *b = layer.col_image;
|
float *c = layer.filter_updates;
|
|
float *im = state.input+i*layer.c*layer.h*layer.w;
|
|
im2col_cpu(im, layer.c, layer.h, layer.w,
|
layer.size, layer.stride, layer.pad, b);
|
gemm(0,1,m,n,k,1,a,k,b,k,1,c,n);
|
|
if(state.delta){
|
a = layer.filters;
|
b = layer.delta + i*m*k;
|
c = layer.col_image;
|
|
gemm(1,0,n,k,m,1,a,n,b,k,0,c,k);
|
|
col2im_cpu(layer.col_image, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, state.delta+i*layer.c*layer.h*layer.w);
|
}
|
}
|
}
|
|
void update_convolutional_layer(convolutional_layer layer, int batch, float learning_rate, float momentum, float decay)
|
{
|
int size = layer.size*layer.size*layer.c*layer.n;
|
axpy_cpu(layer.n, learning_rate/batch, layer.bias_updates, 1, layer.biases, 1);
|
scal_cpu(layer.n, momentum, layer.bias_updates, 1);
|
|
axpy_cpu(size, -decay*batch, layer.filters, 1, layer.filter_updates, 1);
|
axpy_cpu(size, learning_rate/batch, layer.filter_updates, 1, layer.filters, 1);
|
scal_cpu(size, momentum, layer.filter_updates, 1);
|
}
|
|
|
image get_convolutional_filter(convolutional_layer layer, int i)
|
{
|
int h = layer.size;
|
int w = layer.size;
|
int c = layer.c;
|
return float_to_image(w,h,c,layer.filters+i*h*w*c);
|
}
|
|
image *get_filters(convolutional_layer layer)
|
{
|
image *filters = calloc(layer.n, sizeof(image));
|
int i;
|
for(i = 0; i < layer.n; ++i){
|
filters[i] = copy_image(get_convolutional_filter(layer, i));
|
}
|
return filters;
|
}
|
|
image *visualize_convolutional_layer(convolutional_layer layer, char *window, image *prev_filters)
|
{
|
image *single_filters = get_filters(layer);
|
show_images(single_filters, layer.n, window);
|
|
image delta = get_convolutional_image(layer);
|
image dc = collapse_image_layers(delta, 1);
|
char buff[256];
|
sprintf(buff, "%s: Output", window);
|
//show_image(dc, buff);
|
//save_image(dc, buff);
|
free_image(dc);
|
return single_filters;
|
}
|