void save_network(network net, char *filename)
|
{
|
FILE *fp = fopen(filename, "w");
|
if(!fp) file_error(filename);
|
int i;
|
for(i = 0; i < net.n; ++i)
|
{
|
if(net.types[i] == CONVOLUTIONAL)
|
print_convolutional_cfg(fp, (convolutional_layer *)net.layers[i], net, i);
|
else if(net.types[i] == DECONVOLUTIONAL)
|
print_deconvolutional_cfg(fp, (deconvolutional_layer *)net.layers[i], net, i);
|
else if(net.types[i] == CONNECTED)
|
print_connected_cfg(fp, (connected_layer *)net.layers[i], net, i);
|
else if(net.types[i] == CROP)
|
print_crop_cfg(fp, (crop_layer *)net.layers[i], net, i);
|
else if(net.types[i] == MAXPOOL)
|
print_maxpool_cfg(fp, (maxpool_layer *)net.layers[i], net, i);
|
else if(net.types[i] == DROPOUT)
|
print_dropout_cfg(fp, (dropout_layer *)net.layers[i], net, i);
|
else if(net.types[i] == SOFTMAX)
|
print_softmax_cfg(fp, (softmax_layer *)net.layers[i], net, i);
|
else if(net.types[i] == DETECTION)
|
print_detection_cfg(fp, (detection_layer *)net.layers[i], net, i);
|
else if(net.types[i] == COST)
|
print_cost_cfg(fp, (cost_layer *)net.layers[i], net, i);
|
}
|
fclose(fp);
|
}
|
|
void print_convolutional_cfg(FILE *fp, convolutional_layer *l, network net, int count)
|
{
|
#ifdef GPU
|
if(gpu_index >= 0) pull_convolutional_layer(*l);
|
#endif
|
int i;
|
fprintf(fp, "[convolutional]\n");
|
fprintf(fp, "filters=%d\n"
|
"size=%d\n"
|
"stride=%d\n"
|
"pad=%d\n"
|
"activation=%s\n",
|
l->n, l->size, l->stride, l->pad,
|
get_activation_string(l->activation));
|
fprintf(fp, "biases=");
|
for(i = 0; i < l->n; ++i) fprintf(fp, "%g,", l->biases[i]);
|
fprintf(fp, "\n");
|
fprintf(fp, "weights=");
|
for(i = 0; i < l->n*l->c*l->size*l->size; ++i) fprintf(fp, "%g,", l->filters[i]);
|
fprintf(fp, "\n\n");
|
}
|
|
void print_deconvolutional_cfg(FILE *fp, deconvolutional_layer *l, network net, int count)
|
{
|
#ifdef GPU
|
if(gpu_index >= 0) pull_deconvolutional_layer(*l);
|
#endif
|
int i;
|
fprintf(fp, "[deconvolutional]\n");
|
fprintf(fp, "filters=%d\n"
|
"size=%d\n"
|
"stride=%d\n"
|
"activation=%s\n",
|
l->n, l->size, l->stride,
|
get_activation_string(l->activation));
|
fprintf(fp, "biases=");
|
for(i = 0; i < l->n; ++i) fprintf(fp, "%g,", l->biases[i]);
|
fprintf(fp, "\n");
|
fprintf(fp, "weights=");
|
for(i = 0; i < l->n*l->c*l->size*l->size; ++i) fprintf(fp, "%g,", l->filters[i]);
|
fprintf(fp, "\n\n");
|
}
|
|
void print_dropout_cfg(FILE *fp, dropout_layer *l, network net, int count)
|
{
|
fprintf(fp, "[dropout]\n");
|
fprintf(fp, "probability=%g\n\n", l->probability);
|
}
|
|
void print_connected_cfg(FILE *fp, connected_layer *l, network net, int count)
|
{
|
#ifdef GPU
|
if(gpu_index >= 0) pull_connected_layer(*l);
|
#endif
|
int i;
|
fprintf(fp, "[connected]\n");
|
fprintf(fp, "output=%d\n"
|
"activation=%s\n",
|
l->outputs,
|
get_activation_string(l->activation));
|
fprintf(fp, "biases=");
|
for(i = 0; i < l->outputs; ++i) fprintf(fp, "%g,", l->biases[i]);
|
fprintf(fp, "\n");
|
fprintf(fp, "weights=");
|
for(i = 0; i < l->outputs*l->inputs; ++i) fprintf(fp, "%g,", l->weights[i]);
|
fprintf(fp, "\n\n");
|
}
|
|
void print_crop_cfg(FILE *fp, crop_layer *l, network net, int count)
|
{
|
fprintf(fp, "[crop]\n");
|
fprintf(fp, "crop_height=%d\ncrop_width=%d\nflip=%d\n\n", l->crop_height, l->crop_width, l->flip);
|
}
|
|
void print_maxpool_cfg(FILE *fp, maxpool_layer *l, network net, int count)
|
{
|
fprintf(fp, "[maxpool]\n");
|
fprintf(fp, "size=%d\nstride=%d\n\n", l->size, l->stride);
|
}
|
|
void print_softmax_cfg(FILE *fp, softmax_layer *l, network net, int count)
|
{
|
fprintf(fp, "[softmax]\n");
|
fprintf(fp, "\n");
|
}
|
|
void print_detection_cfg(FILE *fp, detection_layer *l, network net, int count)
|
{
|
fprintf(fp, "[detection]\n");
|
fprintf(fp, "classes=%d\ncoords=%d\nrescore=%d\nnuisance=%d\n", l->classes, l->coords, l->rescore, l->nuisance);
|
fprintf(fp, "\n");
|
}
|
|
void print_cost_cfg(FILE *fp, cost_layer *l, network net, int count)
|
{
|
fprintf(fp, "[cost]\ntype=%s\n", get_cost_string(l->type));
|
fprintf(fp, "\n");
|
}
|
|
|
#ifndef NORMALIZATION_LAYER_H
|
#define NORMALIZATION_LAYER_H
|
|
#include "image.h"
|
#include "params.h"
|
|
typedef struct {
|
int batch;
|
int h,w,c;
|
int size;
|
float alpha;
|
float beta;
|
float kappa;
|
float *delta;
|
float *output;
|
float *sums;
|
} normalization_layer;
|
|
image get_normalization_image(normalization_layer layer);
|
normalization_layer *make_normalization_layer(int batch, int h, int w, int c, int size, float alpha, float beta, float kappa);
|
void resize_normalization_layer(normalization_layer *layer, int h, int w);
|
void forward_normalization_layer(const normalization_layer layer, network_state state);
|
void backward_normalization_layer(const normalization_layer layer, network_state state);
|
void visualize_normalization_layer(normalization_layer layer, char *window);
|
|
#endif
|
#include "normalization_layer.h"
|
#include <stdio.h>
|
|
image get_normalization_image(normalization_layer layer)
|
{
|
int h = layer.h;
|
int w = layer.w;
|
int c = layer.c;
|
return float_to_image(w,h,c,layer.output);
|
}
|
|
image get_normalization_delta(normalization_layer layer)
|
{
|
int h = layer.h;
|
int w = layer.w;
|
int c = layer.c;
|
return float_to_image(w,h,c,layer.delta);
|
}
|
|
normalization_layer *make_normalization_layer(int batch, int h, int w, int c, int size, float alpha, float beta, float kappa)
|
{
|
fprintf(stderr, "Local Response Normalization Layer: %d x %d x %d image, %d size\n", h,w,c,size);
|
normalization_layer *layer = calloc(1, sizeof(normalization_layer));
|
layer->batch = batch;
|
layer->h = h;
|
layer->w = w;
|
layer->c = c;
|
layer->kappa = kappa;
|
layer->size = size;
|
layer->alpha = alpha;
|
layer->beta = beta;
|
layer->output = calloc(h * w * c * batch, sizeof(float));
|
layer->delta = calloc(h * w * c * batch, sizeof(float));
|
layer->sums = calloc(h*w, sizeof(float));
|
return layer;
|
}
|
|
void resize_normalization_layer(normalization_layer *layer, int h, int w)
|
{
|
layer->h = h;
|
layer->w = w;
|
layer->output = realloc(layer->output, h * w * layer->c * layer->batch * sizeof(float));
|
layer->delta = realloc(layer->delta, h * w * layer->c * layer->batch * sizeof(float));
|
layer->sums = realloc(layer->sums, h*w * sizeof(float));
|
}
|
|
void add_square_array(float *src, float *dest, int n)
|
{
|
int i;
|
for(i = 0; i < n; ++i){
|
dest[i] += src[i]*src[i];
|
}
|
}
|
void sub_square_array(float *src, float *dest, int n)
|
{
|
int i;
|
for(i = 0; i < n; ++i){
|
dest[i] -= src[i]*src[i];
|
}
|
}
|
|
void forward_normalization_layer(const normalization_layer layer, network_state state)
|
{
|
int i,j,k;
|
memset(layer.sums, 0, layer.h*layer.w*sizeof(float));
|
int imsize = layer.h*layer.w;
|
for(j = 0; j < layer.size/2; ++j){
|
if(j < layer.c) add_square_array(state.input+j*imsize, layer.sums, imsize);
|
}
|
for(k = 0; k < layer.c; ++k){
|
int next = k+layer.size/2;
|
int prev = k-layer.size/2-1;
|
if(next < layer.c) add_square_array(state.input+next*imsize, layer.sums, imsize);
|
if(prev > 0) sub_square_array(state.input+prev*imsize, layer.sums, imsize);
|
for(i = 0; i < imsize; ++i){
|
layer.output[k*imsize + i] = state.input[k*imsize+i] / pow(layer.kappa + layer.alpha * layer.sums[i], layer.beta);
|
}
|
}
|
}
|
|
void backward_normalization_layer(const normalization_layer layer, network_state state)
|
{
|
// TODO!
|
// OR NOT TODO!!
|
}
|
|
void visualize_normalization_layer(normalization_layer layer, char *window)
|
{
|
image delta = get_normalization_image(layer);
|
image dc = collapse_image_layers(delta, 1);
|
char buff[256];
|
sprintf(buff, "%s: Output", window);
|
show_image(dc, buff);
|
save_image(dc, buff);
|
free_image(dc);
|
}
|
|
void test_load()
|
{
|
image dog = load_image("dog.jpg", 300, 400);
|
show_image(dog, "Test Load");
|
show_image_layers(dog, "Test Load");
|
}
|
|
void test_parser()
|
{
|
network net = parse_network_cfg("cfg/trained_imagenet.cfg");
|
save_network(net, "cfg/trained_imagenet_smaller.cfg");
|
}
|
|
void test_init(char *cfgfile)
|
{
|
gpu_index = -1;
|
network net = parse_network_cfg(cfgfile);
|
set_batch_network(&net, 1);
|
srand(2222222);
|
int i = 0;
|
char *filename = "data/test.jpg";
|
|
image im = load_image_color(filename, 256, 256);
|
//z_normalize_image(im);
|
translate_image(im, -128);
|
scale_image(im, 1/128.);
|
float *X = im.data;
|
forward_network(net, X, 0, 1);
|
for(i = 0; i < net.n; ++i){
|
if(net.types[i] == CONVOLUTIONAL){
|
convolutional_layer layer = *(convolutional_layer *)net.layers[i];
|
image output = get_convolutional_image(layer);
|
int size = output.h*output.w*output.c;
|
float v = variance_array(layer.output, size);
|
float m = mean_array(layer.output, size);
|
printf("%d: Convolutional, mean: %f, variance %f\n", i, m, v);
|
}
|
else if(net.types[i] == CONNECTED){
|
connected_layer layer = *(connected_layer *)net.layers[i];
|
int size = layer.outputs;
|
float v = variance_array(layer.output, size);
|
float m = mean_array(layer.output, size);
|
printf("%d: Connected, mean: %f, variance %f\n", i, m, v);
|
}
|
}
|
free_image(im);
|
}
|
void test_dog(char *cfgfile)
|
{
|
image im = load_image_color("data/dog.jpg", 256, 256);
|
translate_image(im, -128);
|
print_image(im);
|
float *X = im.data;
|
network net = parse_network_cfg(cfgfile);
|
set_batch_network(&net, 1);
|
network_predict(net, X);
|
image crop = get_network_image_layer(net, 0);
|
show_image(crop, "cropped");
|
print_image(crop);
|
show_image(im, "orig");
|
float * inter = get_network_output(net);
|
pm(1000, 1, inter);
|
cvWaitKey(0);
|
}
|
|
void test_voc_segment(char *cfgfile, char *weightfile)
|
{
|
network net = parse_network_cfg(cfgfile);
|
if(weightfile){
|
load_weights(&net, weightfile);
|
}
|
set_batch_network(&net, 1);
|
while(1){
|
char filename[256];
|
fgets(filename, 256, stdin);
|
strtok(filename, "\n");
|
image im = load_image_color(filename, 500, 500);
|
//resize_network(net, im.h, im.w, im.c);
|
translate_image(im, -128);
|
scale_image(im, 1/128.);
|
//float *predictions = network_predict(net, im.data);
|
network_predict(net, im.data);
|
free_image(im);
|
image output = get_network_image_layer(net, net.n-2);
|
show_image(output, "Segment Output");
|
cvWaitKey(0);
|
}
|
}
|
void test_visualize(char *filename)
|
{
|
network net = parse_network_cfg(filename);
|
visualize_network(net);
|
cvWaitKey(0);
|
}
|
|
void test_cifar10(char *cfgfile)
|
{
|
network net = parse_network_cfg(cfgfile);
|
data test = load_cifar10_data("data/cifar10/test_batch.bin");
|
clock_t start = clock(), end;
|
float test_acc = network_accuracy_multi(net, test, 10);
|
end = clock();
|
printf("%f in %f Sec\n", test_acc, sec(end-start));
|
//visualize_network(net);
|
//cvWaitKey(0);
|
}
|
|
void train_cifar10(char *cfgfile)
|
{
|
srand(555555);
|
srand(time(0));
|
network net = parse_network_cfg(cfgfile);
|
data test = load_cifar10_data("data/cifar10/test_batch.bin");
|
int count = 0;
|
int iters = 50000/net.batch;
|
data train = load_all_cifar10();
|
while(++count <= 10000){
|
clock_t time = clock();
|
float loss = train_network_sgd(net, train, iters);
|
|
if(count%10 == 0){
|
float test_acc = network_accuracy(net, test);
|
printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds\n", count, loss, test_acc,sec(clock()-time));
|
char buff[256];
|
sprintf(buff, "/home/pjreddie/imagenet_backup/cifar10_%d.cfg", count);
|
save_network(net, buff);
|
}else{
|
printf("%d: Loss: %f, Time: %lf seconds\n", count, loss, sec(clock()-time));
|
}
|
|
}
|
free_data(train);
|
}
|
|
void compare_nist(char *p1,char *p2)
|
{
|
srand(222222);
|
network n1 = parse_network_cfg(p1);
|
network n2 = parse_network_cfg(p2);
|
data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
|
normalize_data_rows(test);
|
compare_networks(n1, n2, test);
|
}
|
|
void test_nist(char *path)
|
{
|
srand(222222);
|
network net = parse_network_cfg(path);
|
data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
|
normalize_data_rows(test);
|
clock_t start = clock(), end;
|
float test_acc = network_accuracy(net, test);
|
end = clock();
|
printf("Accuracy: %f, Time: %lf seconds\n", test_acc,(float)(end-start)/CLOCKS_PER_SEC);
|
}
|
|
void train_nist(char *cfgfile)
|
{
|
srand(222222);
|
// srand(time(0));
|
data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10);
|
data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
|
network net = parse_network_cfg(cfgfile);
|
int count = 0;
|
int iters = 6000/net.batch + 1;
|
while(++count <= 100){
|
clock_t start = clock(), end;
|
normalize_data_rows(train);
|
normalize_data_rows(test);
|
float loss = train_network_sgd(net, train, iters);
|
float test_acc = 0;
|
if(count%1 == 0) test_acc = network_accuracy(net, test);
|
end = clock();
|
printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC);
|
}
|
free_data(train);
|
free_data(test);
|
char buff[256];
|
sprintf(buff, "%s.trained", cfgfile);
|
save_network(net, buff);
|
}
|
|
/*
|
void train_nist_distributed(char *address)
|
{
|
srand(time(0));
|
network net = parse_network_cfg("cfg/nist.client");
|
data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10);
|
//data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
|
normalize_data_rows(train);
|
//normalize_data_rows(test);
|
int count = 0;
|
int iters = 50000/net.batch;
|
iters = 1000/net.batch + 1;
|
while(++count <= 2000){
|
clock_t start = clock(), end;
|
float loss = train_network_sgd(net, train, iters);
|
client_update(net, address);
|
end = clock();
|
//float test_acc = network_accuracy_gpu(net, test);
|
//float test_acc = 0;
|
printf("%d: Loss: %f, Time: %lf seconds\n", count, loss, (float)(end-start)/CLOCKS_PER_SEC);
|
}
|
}
|
*/
|
|
void test_ensemble()
|
{
|
int i;
|
srand(888888);
|
data d = load_categorical_data_csv("mnist/mnist_train.csv", 0, 10);
|
normalize_data_rows(d);
|
data test = load_categorical_data_csv("mnist/mnist_test.csv", 0,10);
|
normalize_data_rows(test);
|
data train = d;
|
// data *split = split_data(d, 1, 10);
|
// data train = split[0];
|
// data test = split[1];
|
matrix prediction = make_matrix(test.y.rows, test.y.cols);
|
int n = 30;
|
for(i = 0; i < n; ++i){
|
int count = 0;
|
float lr = .0005;
|
float momentum = .9;
|
float decay = .01;
|
network net = parse_network_cfg("nist.cfg");
|
while(++count <= 15){
|
float acc = train_network_sgd(net, train, train.X.rows);
|
printf("Training Accuracy: %lf Learning Rate: %f Momentum: %f Decay: %f\n", acc, lr, momentum, decay );
|
lr /= 2;
|
}
|
matrix partial = network_predict_data(net, test);
|
float acc = matrix_topk_accuracy(test.y, partial,1);
|
printf("Model Accuracy: %lf\n", acc);
|
matrix_add_matrix(partial, prediction);
|
acc = matrix_topk_accuracy(test.y, prediction,1);
|
printf("Current Ensemble Accuracy: %lf\n", acc);
|
free_matrix(partial);
|
}
|
float acc = matrix_topk_accuracy(test.y, prediction,1);
|
printf("Full Ensemble Accuracy: %lf\n", acc);
|
}
|
|
void visualize_cat()
|
{
|
network net = parse_network_cfg("cfg/voc_imagenet.cfg");
|
image im = load_image_color("data/cat.png", 0, 0);
|
printf("Processing %dx%d image\n", im.h, im.w);
|
resize_network(net, im.h, im.w, im.c);
|
forward_network(net, im.data, 0, 0);
|
|
visualize_network(net);
|
cvWaitKey(0);
|
}
|
|
void test_correct_nist()
|
{
|
network net = parse_network_cfg("cfg/nist_conv.cfg");
|
srand(222222);
|
net = parse_network_cfg("cfg/nist_conv.cfg");
|
data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10);
|
data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
|
normalize_data_rows(train);
|
normalize_data_rows(test);
|
int count = 0;
|
int iters = 1000/net.batch;
|
|
while(++count <= 5){
|
clock_t start = clock(), end;
|
float loss = train_network_sgd(net, train, iters);
|
end = clock();
|
float test_acc = network_accuracy(net, test);
|
printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay);
|
}
|
save_network(net, "cfg/nist_gpu.cfg");
|
|
gpu_index = -1;
|
count = 0;
|
srand(222222);
|
net = parse_network_cfg("cfg/nist_conv.cfg");
|
while(++count <= 5){
|
clock_t start = clock(), end;
|
float loss = train_network_sgd(net, train, iters);
|
end = clock();
|
float test_acc = network_accuracy(net, test);
|
printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay);
|
}
|
save_network(net, "cfg/nist_cpu.cfg");
|
}
|
|
void test_correct_alexnet()
|
{
|
char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list");
|
list *plist = get_paths("/data/imagenet/cls.train.list");
|
char **paths = (char **)list_to_array(plist);
|
printf("%d\n", plist->size);
|
clock_t time;
|
int count = 0;
|
network net;
|
|
srand(222222);
|
net = parse_network_cfg("cfg/net.cfg");
|
int imgs = net.batch;
|
|
count = 0;
|
while(++count <= 5){
|
time=clock();
|
data train = load_data(paths, imgs, plist->size, labels, 1000, 256, 256);
|
normalize_data_rows(train);
|
printf("Loaded: %lf seconds\n", sec(clock()-time));
|
time=clock();
|
float loss = train_network(net, train);
|
printf("%d: %f, %lf seconds, %d images\n", count, loss, sec(clock()-time), imgs*net.batch);
|
free_data(train);
|
}
|
|
gpu_index = -1;
|
count = 0;
|
srand(222222);
|
net = parse_network_cfg("cfg/net.cfg");
|
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
|
while(++count <= 5){
|
time=clock();
|
data train = load_data(paths, imgs, plist->size, labels, 1000, 256,256);
|
normalize_data_rows(train);
|
printf("Loaded: %lf seconds\n", sec(clock()-time));
|
time=clock();
|
float loss = train_network(net, train);
|
printf("%d: %f, %lf seconds, %d images\n", count, loss, sec(clock()-time), imgs*net.batch);
|
free_data(train);
|
}
|
}
|
|
/*
|
void run_server()
|
{
|
srand(time(0));
|
network net = parse_network_cfg("cfg/net.cfg");
|
set_batch_network(&net, 1);
|
server_update(net);
|
}
|
|
void test_client()
|
{
|
network net = parse_network_cfg("cfg/alexnet.client");
|
clock_t time=clock();
|
client_update(net, "localhost");
|
printf("1\n");
|
client_update(net, "localhost");
|
printf("2\n");
|
client_update(net, "localhost");
|
printf("3\n");
|
printf("Transfered: %lf seconds\n", sec(clock()-time));
|
}
|
*/
|