#include "convolutional_layer.h"
|
#include "utils.h"
|
#include <stdio.h>
|
|
image get_convolutional_image(convolutional_layer layer)
|
{
|
int h,w,c;
|
if(layer.edge){
|
h = (layer.h-1)/layer.stride + 1;
|
w = (layer.w-1)/layer.stride + 1;
|
}else{
|
h = (layer.h - layer.size)/layer.stride+1;
|
w = (layer.h - layer.size)/layer.stride+1;
|
}
|
c = layer.n;
|
return double_to_image(h,w,c,layer.output);
|
}
|
|
image get_convolutional_delta(convolutional_layer layer)
|
{
|
int h,w,c;
|
if(layer.edge){
|
h = (layer.h-1)/layer.stride + 1;
|
w = (layer.w-1)/layer.stride + 1;
|
}else{
|
h = (layer.h - layer.size)/layer.stride+1;
|
w = (layer.h - layer.size)/layer.stride+1;
|
}
|
c = layer.n;
|
return double_to_image(h,w,c,layer.delta);
|
}
|
|
convolutional_layer *make_convolutional_layer(int h, int w, int c, int n, int size, int stride, ACTIVATION activation)
|
{
|
int i;
|
int out_h,out_w;
|
convolutional_layer *layer = calloc(1, sizeof(convolutional_layer));
|
layer->h = h;
|
layer->w = w;
|
layer->c = c;
|
layer->n = n;
|
layer->edge = 1;
|
layer->stride = stride;
|
layer->kernels = calloc(n, sizeof(image));
|
layer->kernel_updates = calloc(n, sizeof(image));
|
layer->kernel_momentum = calloc(n, sizeof(image));
|
layer->biases = calloc(n, sizeof(double));
|
layer->bias_updates = calloc(n, sizeof(double));
|
layer->bias_momentum = calloc(n, sizeof(double));
|
double scale = 2./(size*size);
|
for(i = 0; i < n; ++i){
|
//layer->biases[i] = rand_normal()*scale + scale;
|
layer->biases[i] = 0;
|
layer->kernels[i] = make_random_kernel(size, c, scale);
|
layer->kernel_updates[i] = make_random_kernel(size, c, 0);
|
layer->kernel_momentum[i] = make_random_kernel(size, c, 0);
|
}
|
layer->size = 2*(size/2)+1;
|
if(layer->edge){
|
out_h = (layer->h-1)/layer->stride + 1;
|
out_w = (layer->w-1)/layer->stride + 1;
|
}else{
|
out_h = (layer->h - layer->size)/layer->stride+1;
|
out_w = (layer->h - layer->size)/layer->stride+1;
|
}
|
fprintf(stderr, "Convolutional Layer: %d x %d x %d image, %d filters -> %d x %d x %d image\n", h,w,c,n, out_h, out_w, n);
|
layer->output = calloc(out_h * out_w * n, sizeof(double));
|
layer->delta = calloc(out_h * out_w * n, sizeof(double));
|
layer->upsampled = make_image(h,w,n);
|
layer->activation = activation;
|
|
return layer;
|
}
|
|
void forward_convolutional_layer(const convolutional_layer layer, double *in)
|
{
|
image input = double_to_image(layer.h, layer.w, layer.c, in);
|
image output = get_convolutional_image(layer);
|
int i,j;
|
for(i = 0; i < layer.n; ++i){
|
convolve(input, layer.kernels[i], layer.stride, i, output, layer.edge);
|
}
|
for(i = 0; i < output.c; ++i){
|
for(j = 0; j < output.h*output.w; ++j){
|
int index = i*output.h*output.w + j;
|
output.data[index] += layer.biases[i];
|
output.data[index] = activate(output.data[index], layer.activation);
|
}
|
}
|
}
|
|
void backward_convolutional_layer(convolutional_layer layer, double *input, double *delta)
|
{
|
int i;
|
|
image in_delta = double_to_image(layer.h, layer.w, layer.c, delta);
|
image out_delta = get_convolutional_delta(layer);
|
zero_image(in_delta);
|
|
for(i = 0; i < layer.n; ++i){
|
back_convolve(in_delta, layer.kernels[i], layer.stride, i, out_delta, layer.edge);
|
}
|
}
|
|
void backward_convolutional_layer2(convolutional_layer layer, double *input, double *delta)
|
{
|
image in_delta = double_to_image(layer.h, layer.w, layer.c, delta);
|
image out_delta = get_convolutional_delta(layer);
|
int i,j;
|
for(i = 0; i < layer.n; ++i){
|
rotate_image(layer.kernels[i]);
|
}
|
|
zero_image(in_delta);
|
upsample_image(out_delta, layer.stride, layer.upsampled);
|
for(j = 0; j < in_delta.c; ++j){
|
for(i = 0; i < layer.n; ++i){
|
two_d_convolve(layer.upsampled, i, layer.kernels[i], j, 1, in_delta, j, layer.edge);
|
}
|
}
|
|
for(i = 0; i < layer.n; ++i){
|
rotate_image(layer.kernels[i]);
|
}
|
}
|
|
void gradient_delta_convolutional_layer(convolutional_layer layer)
|
{
|
int i;
|
image out_delta = get_convolutional_delta(layer);
|
image out_image = get_convolutional_image(layer);
|
for(i = 0; i < out_image.h*out_image.w*out_image.c; ++i){
|
out_delta.data[i] *= gradient(out_image.data[i], layer.activation);
|
}
|
}
|
|
void learn_convolutional_layer(convolutional_layer layer, double *input)
|
{
|
int i;
|
image in_image = double_to_image(layer.h, layer.w, layer.c, input);
|
image out_delta = get_convolutional_delta(layer);
|
gradient_delta_convolutional_layer(layer);
|
for(i = 0; i < layer.n; ++i){
|
kernel_update(in_image, layer.kernel_updates[i], layer.stride, i, out_delta, layer.edge);
|
layer.bias_updates[i] += avg_image_layer(out_delta, i);
|
}
|
}
|
|
void update_convolutional_layer(convolutional_layer layer, double step, double momentum, double decay)
|
{
|
int i,j;
|
for(i = 0; i < layer.n; ++i){
|
layer.bias_momentum[i] = step*(layer.bias_updates[i])
|
+ momentum*layer.bias_momentum[i];
|
layer.biases[i] += layer.bias_momentum[i];
|
layer.bias_updates[i] = 0;
|
int pixels = layer.kernels[i].h*layer.kernels[i].w*layer.kernels[i].c;
|
for(j = 0; j < pixels; ++j){
|
layer.kernel_momentum[i].data[j] = step*(layer.kernel_updates[i].data[j] - decay*layer.kernels[i].data[j])
|
+ momentum*layer.kernel_momentum[i].data[j];
|
layer.kernels[i].data[j] += layer.kernel_momentum[i].data[j];
|
}
|
zero_image(layer.kernel_updates[i]);
|
}
|
}
|
|
void visualize_convolutional_filters(convolutional_layer layer, char *window)
|
{
|
int color = 1;
|
int border = 1;
|
int h,w,c;
|
int size = layer.size;
|
h = size;
|
w = (size + border) * layer.n - border;
|
c = layer.kernels[0].c;
|
if(c != 3 || !color){
|
h = (h+border)*c - border;
|
c = 1;
|
}
|
|
image filters = make_image(h,w,c);
|
int i,j;
|
for(i = 0; i < layer.n; ++i){
|
int w_offset = i*(size+border);
|
image k = layer.kernels[i];
|
image copy = copy_image(k);
|
normalize_image(copy);
|
for(j = 0; j < k.c; ++j){
|
set_pixel(copy,0,0,j,layer.biases[i]);
|
}
|
if(c == 3 && color){
|
embed_image(copy, filters, 0, w_offset);
|
}
|
else{
|
for(j = 0; j < k.c; ++j){
|
int h_offset = j*(size+border);
|
image layer = get_image_layer(k, j);
|
embed_image(layer, filters, h_offset, w_offset);
|
free_image(layer);
|
}
|
}
|
free_image(copy);
|
}
|
image delta = get_convolutional_delta(layer);
|
image dc = collapse_image_layers(delta, 1);
|
char buff[256];
|
sprintf(buff, "%s: Delta", window);
|
show_image(dc, buff);
|
free_image(dc);
|
show_image(filters, window);
|
free_image(filters);
|
}
|
|
void visualize_convolutional_layer(convolutional_layer layer)
|
{
|
int i;
|
char buff[256];
|
for(i = 0; i < layer.n; ++i){
|
image k = layer.kernels[i];
|
sprintf(buff, "Kernel %d", i);
|
if(k.c <= 3) show_image(k, buff);
|
else show_image_layers(k, buff);
|
}
|
}
|