#include "yolo_v2_class.hpp"
|
|
#include "network.h"
|
|
extern "C" {
|
#include "detection_layer.h"
|
#include "region_layer.h"
|
#include "cost_layer.h"
|
#include "utils.h"
|
#include "parser.h"
|
#include "box.h"
|
#include "image.h"
|
#include "demo.h"
|
#include "option_list.h"
|
#include "stb_image.h"
|
}
|
//#include <sys/time.h>
|
|
#include <vector>
|
#include <iostream>
|
#include <algorithm>
|
|
#define FRAMES 3
|
|
struct detector_gpu_t{
|
float **probs;
|
box *boxes;
|
network net;
|
image images[FRAMES];
|
float *avg;
|
float *predictions[FRAMES];
|
};
|
|
|
YOLODLL_API Detector::Detector(std::string cfg_filename, std::string weight_filename, int gpu_id)
|
{
|
int old_gpu_index;
|
cudaGetDevice(&old_gpu_index);
|
|
detector_gpu_ptr = std::make_shared<detector_gpu_t>();
|
detector_gpu_t &detector_gpu = *reinterpret_cast<detector_gpu_t *>(detector_gpu_ptr.get());
|
|
cudaSetDevice(gpu_id);
|
network &net = detector_gpu.net;
|
net.gpu_index = gpu_id;
|
//gpu_index = i;
|
|
char *cfgfile = const_cast<char *>(cfg_filename.data());
|
char *weightfile = const_cast<char *>(weight_filename.data());
|
|
net = parse_network_cfg(cfgfile);
|
if (weightfile) {
|
load_weights(&net, weightfile);
|
}
|
set_batch_network(&net, 1);
|
net.gpu_index = gpu_id;
|
|
layer l = net.layers[net.n - 1];
|
int j;
|
|
detector_gpu.avg = (float *)calloc(l.outputs, sizeof(float));
|
for (j = 0; j < FRAMES; ++j) detector_gpu.predictions[j] = (float *)calloc(l.outputs, sizeof(float));
|
for (j = 0; j < FRAMES; ++j) detector_gpu.images[j] = make_image(1, 1, 3);
|
|
detector_gpu.boxes = (box *)calloc(l.w*l.h*l.n, sizeof(box));
|
detector_gpu.probs = (float **)calloc(l.w*l.h*l.n, sizeof(float *));
|
for (j = 0; j < l.w*l.h*l.n; ++j) detector_gpu.probs[j] = (float *)calloc(l.classes, sizeof(float));
|
|
cudaSetDevice(old_gpu_index);
|
}
|
|
|
YOLODLL_API Detector::~Detector()
|
{
|
detector_gpu_t &detector_gpu = *reinterpret_cast<detector_gpu_t *>(detector_gpu_ptr.get());
|
layer l = detector_gpu.net.layers[detector_gpu.net.n - 1];
|
|
free(detector_gpu.avg);
|
for (int j = 0; j < FRAMES; ++j) free(detector_gpu.predictions[j]);
|
for (int j = 0; j < FRAMES; ++j) if(detector_gpu.images[j].data) free(detector_gpu.images[j].data);
|
|
free(detector_gpu.boxes);
|
free(detector_gpu.probs);
|
for (int j = 0; j < l.w*l.h*l.n; ++j) free(detector_gpu.probs[j]);
|
|
int old_gpu_index;
|
cudaGetDevice(&old_gpu_index);
|
cudaSetDevice(detector_gpu.net.gpu_index);
|
|
free_network(detector_gpu.net);
|
|
cudaSetDevice(old_gpu_index);
|
}
|
|
|
YOLODLL_API std::vector<bbox_t> Detector::detect(std::string image_filename, float thresh)
|
{
|
std::shared_ptr<image_t> image_ptr(new image_t, [](image_t *img) { if (img->data) free(img->data); delete img; });
|
*image_ptr = load_image(image_filename);
|
return detect(*image_ptr, thresh);
|
}
|
|
static image load_image_stb(char *filename, int channels)
|
{
|
int w, h, c;
|
unsigned char *data = stbi_load(filename, &w, &h, &c, channels);
|
if (!data)
|
throw std::runtime_error("file not found");
|
if (channels) c = channels;
|
int i, j, k;
|
image im = make_image(w, h, c);
|
for (k = 0; k < c; ++k) {
|
for (j = 0; j < h; ++j) {
|
for (i = 0; i < w; ++i) {
|
int dst_index = i + w*j + w*h*k;
|
int src_index = k + c*i + c*w*j;
|
im.data[dst_index] = (float)data[src_index] / 255.;
|
}
|
}
|
}
|
free(data);
|
return im;
|
}
|
|
YOLODLL_API image_t Detector::load_image(std::string image_filename)
|
{
|
char *input = const_cast<char *>(image_filename.data());
|
image im = load_image_stb(input, 3);
|
|
image_t img;
|
img.c = im.c;
|
img.data = im.data;
|
img.h = im.h;
|
img.w = im.w;
|
|
return img;
|
}
|
|
|
YOLODLL_API void Detector::free_image(image_t m)
|
{
|
if (m.data) {
|
free(m.data);
|
}
|
}
|
|
YOLODLL_API std::vector<bbox_t> Detector::detect(image_t img, float thresh)
|
{
|
|
detector_gpu_t &detector_gpu = *reinterpret_cast<detector_gpu_t *>(detector_gpu_ptr.get());
|
network &net = detector_gpu.net;
|
int old_gpu_index;
|
cudaGetDevice(&old_gpu_index);
|
cudaSetDevice(net.gpu_index);
|
//std::cout << "net.gpu_index = " << net.gpu_index << std::endl;
|
|
float nms = .4;
|
|
image im;
|
im.c = img.c;
|
im.data = img.data;
|
im.h = img.h;
|
im.w = img.w;
|
|
image sized = resize_image(im, net.w, net.h);
|
layer l = net.layers[net.n - 1];
|
|
float *X = sized.data;
|
|
network_predict(net, X);
|
|
get_region_boxes(l, 1, 1, thresh, detector_gpu.probs, detector_gpu.boxes, 0, 0);
|
if (nms) do_nms_sort(detector_gpu.boxes, detector_gpu.probs, l.w*l.h*l.n, l.classes, nms);
|
//draw_detections(im, l.w*l.h*l.n, thresh, boxes, probs, names, alphabet, l.classes);
|
|
std::vector<bbox_t> bbox_vec;
|
|
for (size_t i = 0; i < (l.w*l.h*l.n); ++i) {
|
box b = detector_gpu.boxes[i];
|
int const obj_id = max_index(detector_gpu.probs[i], l.classes);
|
float const prob = detector_gpu.probs[i][obj_id];
|
|
if (prob > thresh)
|
{
|
bbox_t bbox;
|
bbox.x = std::max((double)0, (b.x - b.w / 2.)*im.w);
|
bbox.y = std::max((double)0, (b.y - b.h / 2.)*im.h);
|
bbox.w = b.w*im.w;
|
bbox.h = b.h*im.h;
|
bbox.obj_id = obj_id;
|
bbox.prob = prob;
|
|
bbox_vec.push_back(bbox);
|
}
|
}
|
|
if(sized.data)
|
free(sized.data);
|
|
cudaSetDevice(old_gpu_index);
|
|
return bbox_vec;
|
}
|