#include "convolutional_layer.h"
|
#include "utils.h"
|
#include "mini_blas.h"
|
#include <stdio.h>
|
|
int convolutional_out_height(convolutional_layer layer)
|
{
|
return (layer.h-layer.size)/layer.stride + 1;
|
}
|
|
int convolutional_out_width(convolutional_layer layer)
|
{
|
return (layer.w-layer.size)/layer.stride + 1;
|
}
|
|
image get_convolutional_image(convolutional_layer layer)
|
{
|
int h,w,c;
|
h = convolutional_out_height(layer);
|
w = convolutional_out_width(layer);
|
c = layer.n;
|
return float_to_image(h,w,c,layer.output);
|
}
|
|
image get_convolutional_delta(convolutional_layer layer)
|
{
|
int h,w,c;
|
h = convolutional_out_height(layer);
|
w = convolutional_out_width(layer);
|
c = layer.n;
|
return float_to_image(h,w,c,layer.delta);
|
}
|
|
convolutional_layer *make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, ACTIVATION activation)
|
{
|
int i;
|
size = 2*(size/2)+1; //HA! And you thought you'd use an even sized filter...
|
convolutional_layer *layer = calloc(1, sizeof(convolutional_layer));
|
layer->h = h;
|
layer->w = w;
|
layer->c = c;
|
layer->n = n;
|
layer->batch = batch;
|
layer->stride = stride;
|
layer->size = size;
|
|
layer->filters = calloc(c*n*size*size, sizeof(float));
|
layer->filter_updates = calloc(c*n*size*size, sizeof(float));
|
layer->filter_momentum = calloc(c*n*size*size, sizeof(float));
|
|
layer->biases = calloc(n, sizeof(float));
|
layer->bias_updates = calloc(n, sizeof(float));
|
layer->bias_momentum = calloc(n, sizeof(float));
|
float scale = 1./(size*size*c);
|
for(i = 0; i < c*n*size*size; ++i) layer->filters[i] = scale*(rand_uniform());
|
for(i = 0; i < n; ++i){
|
//layer->biases[i] = rand_normal()*scale + scale;
|
layer->biases[i] = 0;
|
}
|
int out_h = convolutional_out_height(*layer);
|
int out_w = convolutional_out_width(*layer);
|
|
layer->col_image = calloc(layer->batch*out_h*out_w*size*size*c, sizeof(float));
|
layer->output = calloc(layer->batch*out_h * out_w * n, sizeof(float));
|
layer->delta = calloc(layer->batch*out_h * out_w * n, sizeof(float));
|
layer->activation = activation;
|
|
fprintf(stderr, "Convolutional Layer: %d x %d x %d image, %d filters -> %d x %d x %d image\n", h,w,c,n, out_h, out_w, n);
|
srand(0);
|
|
return layer;
|
}
|
|
void resize_convolutional_layer(convolutional_layer *layer, int h, int w, int c)
|
{
|
layer->h = h;
|
layer->w = w;
|
layer->c = c;
|
int out_h = convolutional_out_height(*layer);
|
int out_w = convolutional_out_width(*layer);
|
|
layer->col_image = realloc(layer->col_image,
|
layer->batch*out_h*out_w*layer->size*layer->size*layer->c*sizeof(float));
|
layer->output = realloc(layer->output,
|
layer->batch*out_h * out_w * layer->n*sizeof(float));
|
layer->delta = realloc(layer->delta,
|
layer->batch*out_h * out_w * layer->n*sizeof(float));
|
}
|
|
void forward_convolutional_layer(const convolutional_layer layer, float *in)
|
{
|
int i;
|
int m = layer.n;
|
int k = layer.size*layer.size*layer.c;
|
int n = convolutional_out_height(layer)*
|
convolutional_out_width(layer)*
|
layer.batch;
|
|
float *a = layer.filters;
|
float *b = layer.col_image;
|
float *c = layer.output;
|
for(i = 0; i < layer.batch; ++i){
|
im2col_gpu(in+i*(n/layer.batch), layer.c, layer.h, layer.w, layer.size, layer.stride, b+i*(n/layer.batch));
|
}
|
gemm(0,0,m,n,k,1,a,k,b,n,0,c,n);
|
activate_array(layer.output, m*n, layer.activation);
|
}
|
|
void learn_bias_convolutional_layer(convolutional_layer layer)
|
{
|
int i,j,b;
|
int size = convolutional_out_height(layer)
|
*convolutional_out_width(layer);
|
for(b = 0; b < layer.batch; ++b){
|
for(i = 0; i < layer.n; ++i){
|
float sum = 0;
|
for(j = 0; j < size; ++j){
|
sum += layer.delta[j+size*(i+b*layer.n)];
|
}
|
layer.bias_updates[i] += sum/size;
|
}
|
}
|
}
|
|
void learn_convolutional_layer(convolutional_layer layer)
|
{
|
int m = layer.n;
|
int n = layer.size*layer.size*layer.c;
|
int k = convolutional_out_height(layer)*
|
convolutional_out_width(layer)*
|
layer.batch;
|
gradient_array(layer.output, m*k, layer.activation, layer.delta);
|
learn_bias_convolutional_layer(layer);
|
|
float *a = layer.delta;
|
float *b = layer.col_image;
|
float *c = layer.filter_updates;
|
|
gemm(0,1,m,n,k,1,a,k,b,k,1,c,n);
|
}
|
|
void backward_convolutional_layer(convolutional_layer layer, float *delta)
|
{
|
int i;
|
int m = layer.size*layer.size*layer.c;
|
int k = layer.n;
|
int n = convolutional_out_height(layer)*
|
convolutional_out_width(layer)*
|
layer.batch;
|
|
float *a = layer.filters;
|
float *b = layer.delta;
|
float *c = layer.col_image;
|
|
gemm(1,0,m,n,k,1,a,m,b,n,0,c,n);
|
|
memset(delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float));
|
for(i = 0; i < layer.batch; ++i){
|
col2im_cpu(c+i*n/layer.batch, layer.c, layer.h, layer.w, layer.size, layer.stride, delta+i*n/layer.batch);
|
}
|
}
|
|
void update_convolutional_layer(convolutional_layer layer, float step, float momentum, float decay)
|
{
|
int size = layer.size*layer.size*layer.c*layer.n;
|
axpy_cpu(layer.n, step, layer.bias_updates, 1, layer.biases, 1);
|
scal_cpu(layer.n, momentum, layer.bias_updates, 1);
|
|
scal_cpu(size, 1.-step*decay, layer.filters, 1);
|
axpy_cpu(size, step, layer.filter_updates, 1, layer.filters, 1);
|
scal_cpu(size, momentum, layer.filter_updates, 1);
|
}
|
|
void test_convolutional_layer()
|
{
|
convolutional_layer l = *make_convolutional_layer(1,4,4,1,1,3,1,LINEAR);
|
float input[] = {1,2,3,4,
|
5,6,7,8,
|
9,10,11,12,
|
13,14,15,16};
|
float filter[] = {.5, 0, .3,
|
0 , 1, 0,
|
.2 , 0, 1};
|
float delta[] = {1, 2,
|
3, 4};
|
float in_delta[] = {.5,1,.3,.6,
|
5,6,7,8,
|
9,10,11,12,
|
13,14,15,16};
|
l.filters = filter;
|
forward_convolutional_layer(l, input);
|
l.delta = delta;
|
learn_convolutional_layer(l);
|
image filter_updates = float_to_image(3,3,1,l.filter_updates);
|
print_image(filter_updates);
|
printf("Delta:\n");
|
backward_convolutional_layer(l, in_delta);
|
pm(4,4,in_delta);
|
}
|
|
image get_convolutional_filter(convolutional_layer layer, int i)
|
{
|
int h = layer.size;
|
int w = layer.size;
|
int c = layer.c;
|
return float_to_image(h,w,c,layer.filters+i*h*w*c);
|
}
|
|
image *weighted_sum_filters(convolutional_layer layer, image *prev_filters)
|
{
|
image *filters = calloc(layer.n, sizeof(image));
|
int i,j,k,c;
|
if(!prev_filters){
|
for(i = 0; i < layer.n; ++i){
|
filters[i] = copy_image(get_convolutional_filter(layer, i));
|
}
|
}
|
else{
|
image base = prev_filters[0];
|
for(i = 0; i < layer.n; ++i){
|
image filter = get_convolutional_filter(layer, i);
|
filters[i] = make_image(base.h, base.w, base.c);
|
for(j = 0; j < layer.size; ++j){
|
for(k = 0; k < layer.size; ++k){
|
for(c = 0; c < layer.c; ++c){
|
float weight = get_pixel(filter, j, k, c);
|
image prev_filter = copy_image(prev_filters[c]);
|
scale_image(prev_filter, weight);
|
add_into_image(prev_filter, filters[i], 0,0);
|
free_image(prev_filter);
|
}
|
}
|
}
|
}
|
}
|
return filters;
|
}
|
|
image *visualize_convolutional_layer(convolutional_layer layer, char *window, image *prev_filters)
|
{
|
image *single_filters = weighted_sum_filters(layer, 0);
|
show_images(single_filters, layer.n, window);
|
|
image delta = get_convolutional_image(layer);
|
image dc = collapse_image_layers(delta, 1);
|
char buff[256];
|
sprintf(buff, "%s: Output", window);
|
show_image(dc, buff);
|
save_image(dc, buff);
|
free_image(dc);
|
return single_filters;
|
}
|