#include "data.h"
|
#include "utils.h"
|
#include "image.h"
|
|
#include <stdio.h>
|
#include <stdlib.h>
|
#include <string.h>
|
|
struct load_args{
|
char **paths;
|
int n;
|
int m;
|
char **labels;
|
int k;
|
int h;
|
int w;
|
int nh;
|
int nw;
|
int jitter;
|
int classes;
|
int background;
|
data *d;
|
};
|
|
list *get_paths(char *filename)
|
{
|
char *path;
|
FILE *file = fopen(filename, "r");
|
if(!file) file_error(filename);
|
list *lines = make_list();
|
while((path=fgetl(file))){
|
list_insert(lines, path);
|
}
|
fclose(file);
|
return lines;
|
}
|
|
char **get_random_paths(char **paths, int n, int m)
|
{
|
char **random_paths = calloc(n, sizeof(char*));
|
int i;
|
for(i = 0; i < n; ++i){
|
int index = rand()%m;
|
random_paths[i] = paths[index];
|
if(i == 0) printf("%s\n", paths[index]);
|
}
|
return random_paths;
|
}
|
|
matrix load_image_paths(char **paths, int n, int h, int w)
|
{
|
int i;
|
matrix X;
|
X.rows = n;
|
X.vals = calloc(X.rows, sizeof(float*));
|
X.cols = 0;
|
|
for(i = 0; i < n; ++i){
|
image im = load_image_color(paths[i], h, w);
|
X.vals[i] = im.data;
|
X.cols = im.h*im.w*im.c;
|
}
|
return X;
|
}
|
|
typedef struct box{
|
int id;
|
float x,y,w,h;
|
float left, right, top, bottom;
|
} box;
|
|
box *read_boxes(char *filename, int *n)
|
{
|
box *boxes = calloc(1, sizeof(box));
|
FILE *file = fopen(filename, "r");
|
if(!file) file_error(filename);
|
float x, y, h, w;
|
int id;
|
int count = 0;
|
while(fscanf(file, "%d %f %f %f %f", &id, &x, &y, &w, &h) == 5){
|
boxes = realloc(boxes, (count+1)*sizeof(box));
|
boxes[count].id = id;
|
boxes[count].x = x;
|
boxes[count].y = y;
|
boxes[count].h = h;
|
boxes[count].w = w;
|
boxes[count].left = x - w/2;
|
boxes[count].right = x + w/2;
|
boxes[count].top = y - h/2;
|
boxes[count].bottom = y + h/2;
|
++count;
|
}
|
fclose(file);
|
*n = count;
|
return boxes;
|
}
|
|
void randomize_boxes(box *b, int n)
|
{
|
int i;
|
for(i = 0; i < n; ++i){
|
box swap = b[i];
|
int index = rand()%n;
|
b[i] = b[index];
|
b[index] = swap;
|
}
|
}
|
|
void fill_truth_detection(char *path, float *truth, int classes, int height, int width, int num_height, int num_width, int dy, int dx, int jitter, int flip, int background)
|
{
|
int box_height = height/num_height;
|
int box_width = width/num_width;
|
char *labelpath = find_replace(path, "VOC2012/JPEGImages", "labels");
|
labelpath = find_replace(labelpath, ".jpg", ".txt");
|
int count = 0;
|
box *boxes = read_boxes(labelpath, &count);
|
randomize_boxes(boxes, count);
|
float x, y, h, w;
|
int id;
|
int i;
|
if(background){
|
for(i = 0; i < num_height*num_width*(4+classes+background); i += 4+classes+background){
|
truth[i] = 1;
|
}
|
}
|
for(i = 0; i < count; ++i){
|
x = boxes[i].x;
|
y = boxes[i].y;
|
w = boxes[i].w;
|
h = boxes[i].h;
|
id = boxes[i].id;
|
if(flip) x = 1-x;
|
x *= width + jitter;
|
y *= height + jitter;
|
x -= dx;
|
y -= dy;
|
int i = x/box_width;
|
int j = y/box_height;
|
|
if(i < 0) i = 0;
|
if(i >= num_width) i = num_width-1;
|
if(j < 0) j = 0;
|
if(j >= num_height) j = num_height-1;
|
|
float dw = constrain(0,1, (x - i*box_width)/box_width );
|
float dh = constrain(0,1, (y - j*box_height)/box_height );
|
float th = constrain(0,1, h*(height+jitter)/height );
|
float tw = constrain(0,1, w*(width+jitter)/width );
|
|
int index = (i+j*num_width)*(4+classes+background);
|
if(truth[index+classes+background+2]) continue;
|
if(background) truth[index++] = 0;
|
truth[index+id] = 1;
|
index += classes;
|
truth[index++] = dh;
|
truth[index++] = dw;
|
truth[index++] = th;
|
truth[index++] = tw;
|
}
|
free(boxes);
|
}
|
|
#define NUMCHARS 37
|
|
void print_letters(float *pred, int n)
|
{
|
int i;
|
for(i = 0; i < n; ++i){
|
int index = max_index(pred+i*NUMCHARS, NUMCHARS);
|
printf("%c", int_to_alphanum(index));
|
}
|
printf("\n");
|
}
|
|
void fill_truth_captcha(char *path, int n, float *truth)
|
{
|
char *begin = strrchr(path, '/');
|
++begin;
|
int i;
|
for(i = 0; i < strlen(begin) && i < n && begin[i] != '.'; ++i){
|
int index = alphanum_to_int(begin[i]);
|
if(index > 35) printf("Bad %c\n", begin[i]);
|
truth[i*NUMCHARS+index] = 1;
|
}
|
for(;i < n; ++i){
|
truth[i*NUMCHARS + NUMCHARS-1] = 1;
|
}
|
}
|
|
data load_data_captcha(char **paths, int n, int m, int k, int h, int w)
|
{
|
if(m) paths = get_random_paths(paths, n, m);
|
data d;
|
d.shallow = 0;
|
d.X = load_image_paths(paths, n, h, w);
|
d.y = make_matrix(n, k*NUMCHARS);
|
int i;
|
for(i = 0; i < n; ++i){
|
fill_truth_captcha(paths[i], k, d.y.vals[i]);
|
}
|
if(m) free(paths);
|
return d;
|
}
|
|
data load_data_captcha_encode(char **paths, int n, int m, int h, int w)
|
{
|
if(m) paths = get_random_paths(paths, n, m);
|
data d;
|
d.shallow = 0;
|
d.X = load_image_paths(paths, n, h, w);
|
d.X.cols = 17100;
|
d.y = d.X;
|
if(m) free(paths);
|
return d;
|
}
|
|
void fill_truth(char *path, char **labels, int k, float *truth)
|
{
|
int i;
|
memset(truth, 0, k*sizeof(float));
|
int count = 0;
|
for(i = 0; i < k; ++i){
|
if(strstr(path, labels[i])){
|
truth[i] = 1;
|
++count;
|
}
|
}
|
if(count != 1) printf("%d, %s\n", count, path);
|
}
|
|
matrix load_labels_paths(char **paths, int n, char **labels, int k)
|
{
|
matrix y = make_matrix(n, k);
|
int i;
|
for(i = 0; i < n && labels; ++i){
|
fill_truth(paths[i], labels, k, y.vals[i]);
|
}
|
return y;
|
}
|
|
data load_data_image_pathfile(char *filename, char **labels, int k, int h, int w)
|
{
|
list *plist = get_paths(filename);
|
char **paths = (char **)list_to_array(plist);
|
int n = plist->size;
|
data d;
|
d.shallow = 0;
|
d.X = load_image_paths(paths, n, h, w);
|
d.y = load_labels_paths(paths, n, labels, k);
|
free_list_contents(plist);
|
free_list(plist);
|
free(paths);
|
return d;
|
}
|
|
char **get_labels(char *filename)
|
{
|
list *plist = get_paths(filename);
|
char **labels = (char **)list_to_array(plist);
|
free_list(plist);
|
return labels;
|
}
|
|
void free_data(data d)
|
{
|
if(!d.shallow){
|
free_matrix(d.X);
|
free_matrix(d.y);
|
}else{
|
free(d.X.vals);
|
free(d.y.vals);
|
}
|
}
|
|
data load_data_detection_jitter_random(int n, char **paths, int m, int classes, int h, int w, int nh, int nw, int jitter, int background)
|
{
|
char **random_paths = get_random_paths(paths, n, m);
|
int i;
|
data d;
|
d.shallow = 0;
|
d.X = load_image_paths(random_paths, n, h, w);
|
int k = nh*nw*(4+classes+background);
|
d.y = make_matrix(n, k);
|
for(i = 0; i < n; ++i){
|
int dx = rand()%jitter;
|
int dy = rand()%jitter;
|
int flip = rand()%2;
|
fill_truth_detection(random_paths[i], d.y.vals[i], classes, h-jitter, w-jitter, nh, nw, dy, dx, jitter, flip, background);
|
image a = float_to_image(h, w, 3, d.X.vals[i]);
|
if(flip) flip_image(a);
|
jitter_image(a,h-jitter,w-jitter,dy,dx);
|
}
|
d.X.cols = (h-jitter)*(w-jitter)*3;
|
free(random_paths);
|
return d;
|
}
|
|
void *load_detection_thread(void *ptr)
|
{
|
printf("Loading data: %d\n", rand());
|
struct load_args a = *(struct load_args*)ptr;
|
*a.d = load_data_detection_jitter_random(a.n, a.paths, a.m, a.classes, a.h, a.w, a.nh, a.nw, a.jitter, a.background);
|
translate_data_rows(*a.d, -128);
|
scale_data_rows(*a.d, 1./128);
|
free(ptr);
|
return 0;
|
}
|
|
pthread_t load_data_detection_thread(int n, char **paths, int m, int classes, int h, int w, int nh, int nw, int jitter, int background, data *d)
|
{
|
pthread_t thread;
|
struct load_args *args = calloc(1, sizeof(struct load_args));
|
args->n = n;
|
args->paths = paths;
|
args->m = m;
|
args->h = h;
|
args->w = w;
|
args->nh = nh;
|
args->nw = nw;
|
args->classes = classes;
|
args->jitter = jitter;
|
args->background = background;
|
args->d = d;
|
if(pthread_create(&thread, 0, load_detection_thread, args)) {
|
error("Thread creation failed");
|
}
|
return thread;
|
}
|
|
data load_data(char **paths, int n, int m, char **labels, int k, int h, int w)
|
{
|
if(m) paths = get_random_paths(paths, n, m);
|
data d;
|
d.shallow = 0;
|
d.X = load_image_paths(paths, n, h, w);
|
d.y = load_labels_paths(paths, n, labels, k);
|
if(m) free(paths);
|
return d;
|
}
|
|
void *load_in_thread(void *ptr)
|
{
|
struct load_args a = *(struct load_args*)ptr;
|
*a.d = load_data(a.paths, a.n, a.m, a.labels, a.k, a.h, a.w);
|
translate_data_rows(*a.d, -128);
|
scale_data_rows(*a.d, 1./128);
|
free(ptr);
|
return 0;
|
}
|
|
pthread_t load_data_thread(char **paths, int n, int m, char **labels, int k, int h, int w, data *d)
|
{
|
pthread_t thread;
|
struct load_args *args = calloc(1, sizeof(struct load_args));
|
args->n = n;
|
args->paths = paths;
|
args->m = m;
|
args->labels = labels;
|
args->k = k;
|
args->h = h;
|
args->w = w;
|
args->d = d;
|
if(pthread_create(&thread, 0, load_in_thread, args)) {
|
error("Thread creation failed");
|
}
|
return thread;
|
}
|
|
data load_categorical_data_csv(char *filename, int target, int k)
|
{
|
data d;
|
d.shallow = 0;
|
matrix X = csv_to_matrix(filename);
|
float *truth_1d = pop_column(&X, target);
|
float **truth = one_hot_encode(truth_1d, X.rows, k);
|
matrix y;
|
y.rows = X.rows;
|
y.cols = k;
|
y.vals = truth;
|
d.X = X;
|
d.y = y;
|
free(truth_1d);
|
return d;
|
}
|
|
data load_cifar10_data(char *filename)
|
{
|
data d;
|
d.shallow = 0;
|
long i,j;
|
matrix X = make_matrix(10000, 3072);
|
matrix y = make_matrix(10000, 10);
|
d.X = X;
|
d.y = y;
|
|
FILE *fp = fopen(filename, "rb");
|
if(!fp) file_error(filename);
|
for(i = 0; i < 10000; ++i){
|
unsigned char bytes[3073];
|
fread(bytes, 1, 3073, fp);
|
int class = bytes[0];
|
y.vals[i][class] = 1;
|
for(j = 0; j < X.cols; ++j){
|
X.vals[i][j] = (double)bytes[j+1];
|
}
|
}
|
translate_data_rows(d, -144);
|
scale_data_rows(d, 1./128);
|
//normalize_data_rows(d);
|
fclose(fp);
|
return d;
|
}
|
|
void get_random_batch(data d, int n, float *X, float *y)
|
{
|
int j;
|
for(j = 0; j < n; ++j){
|
int index = rand()%d.X.rows;
|
memcpy(X+j*d.X.cols, d.X.vals[index], d.X.cols*sizeof(float));
|
memcpy(y+j*d.y.cols, d.y.vals[index], d.y.cols*sizeof(float));
|
}
|
}
|
|
void get_next_batch(data d, int n, int offset, float *X, float *y)
|
{
|
int j;
|
for(j = 0; j < n; ++j){
|
int index = offset + j;
|
memcpy(X+j*d.X.cols, d.X.vals[index], d.X.cols*sizeof(float));
|
memcpy(y+j*d.y.cols, d.y.vals[index], d.y.cols*sizeof(float));
|
}
|
}
|
|
|
data load_all_cifar10()
|
{
|
data d;
|
d.shallow = 0;
|
int i,j,b;
|
matrix X = make_matrix(50000, 3072);
|
matrix y = make_matrix(50000, 10);
|
d.X = X;
|
d.y = y;
|
|
|
for(b = 0; b < 5; ++b){
|
char buff[256];
|
sprintf(buff, "data/cifar10/data_batch_%d.bin", b+1);
|
FILE *fp = fopen(buff, "rb");
|
if(!fp) file_error(buff);
|
for(i = 0; i < 10000; ++i){
|
unsigned char bytes[3073];
|
fread(bytes, 1, 3073, fp);
|
int class = bytes[0];
|
y.vals[i+b*10000][class] = 1;
|
for(j = 0; j < X.cols; ++j){
|
X.vals[i+b*10000][j] = (double)bytes[j+1];
|
}
|
}
|
fclose(fp);
|
}
|
//normalize_data_rows(d);
|
translate_data_rows(d, -144);
|
scale_data_rows(d, 1./128);
|
return d;
|
}
|
|
void randomize_data(data d)
|
{
|
int i;
|
for(i = d.X.rows-1; i > 0; --i){
|
int index = rand()%i;
|
float *swap = d.X.vals[index];
|
d.X.vals[index] = d.X.vals[i];
|
d.X.vals[i] = swap;
|
|
swap = d.y.vals[index];
|
d.y.vals[index] = d.y.vals[i];
|
d.y.vals[i] = swap;
|
}
|
}
|
|
void scale_data_rows(data d, float s)
|
{
|
int i;
|
for(i = 0; i < d.X.rows; ++i){
|
scale_array(d.X.vals[i], d.X.cols, s);
|
}
|
}
|
|
void translate_data_rows(data d, float s)
|
{
|
int i;
|
for(i = 0; i < d.X.rows; ++i){
|
translate_array(d.X.vals[i], d.X.cols, s);
|
}
|
}
|
|
void normalize_data_rows(data d)
|
{
|
int i;
|
for(i = 0; i < d.X.rows; ++i){
|
normalize_array(d.X.vals[i], d.X.cols);
|
}
|
}
|
|
data *split_data(data d, int part, int total)
|
{
|
data *split = calloc(2, sizeof(data));
|
int i;
|
int start = part*d.X.rows/total;
|
int end = (part+1)*d.X.rows/total;
|
data train;
|
data test;
|
train.shallow = test.shallow = 1;
|
|
test.X.rows = test.y.rows = end-start;
|
train.X.rows = train.y.rows = d.X.rows - (end-start);
|
train.X.cols = test.X.cols = d.X.cols;
|
train.y.cols = test.y.cols = d.y.cols;
|
|
train.X.vals = calloc(train.X.rows, sizeof(float*));
|
test.X.vals = calloc(test.X.rows, sizeof(float*));
|
train.y.vals = calloc(train.y.rows, sizeof(float*));
|
test.y.vals = calloc(test.y.rows, sizeof(float*));
|
|
for(i = 0; i < start; ++i){
|
train.X.vals[i] = d.X.vals[i];
|
train.y.vals[i] = d.y.vals[i];
|
}
|
for(i = start; i < end; ++i){
|
test.X.vals[i-start] = d.X.vals[i];
|
test.y.vals[i-start] = d.y.vals[i];
|
}
|
for(i = end; i < d.X.rows; ++i){
|
train.X.vals[i-(end-start)] = d.X.vals[i];
|
train.y.vals[i-(end-start)] = d.y.vals[i];
|
}
|
split[0] = train;
|
split[1] = test;
|
return split;
|
}
|