Joseph Redmon
2014-11-19 7c120aef23fde5b215b0fb6eef3074a15f16ff69
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
#include "connected_layer.h"
#include "convolutional_layer.h"
#include "maxpool_layer.h"
#include "network.h"
#include "image.h"
#include "parser.h"
#include "data.h"
#include "matrix.h"
#include "utils.h"
#include "mini_blas.h"
 
#include <time.h>
#include <stdlib.h>
#include <stdio.h>
 
#define _GNU_SOURCE
#include <fenv.h>
 
void test_convolve()
{
    image dog = load_image("dog.jpg",300,400);
    printf("dog channels %d\n", dog.c);
    image kernel = make_random_image(3,3,dog.c);
    image edge = make_image(dog.h, dog.w, 1);
    int i;
    clock_t start = clock(), end;
    for(i = 0; i < 1000; ++i){
        convolve(dog, kernel, 1, 0, edge, 1);
    }
    end = clock();
    printf("Convolutions: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC);
    show_image_layers(edge, "Test Convolve");
}
 
#ifdef GPU
 
void test_convolutional_layer()
{
    int i;
    image dog = load_image("data/dog.jpg",224,224);
    network net = parse_network_cfg("cfg/convolutional.cfg");
//    data test = load_cifar10_data("data/cifar10/test_batch.bin");
//    float *X = calloc(net.batch*test.X.cols, sizeof(float));
//    float *y = calloc(net.batch*test.y.cols, sizeof(float));
    int in_size = get_network_input_size(net)*net.batch;
    int del_size = get_network_output_size_layer(net, 0)*net.batch;
    int size = get_network_output_size(net)*net.batch;
    float *X = calloc(in_size, sizeof(float));
    float *y = calloc(size, sizeof(float));
    for(i = 0; i < in_size; ++i){
        X[i] = dog.data[i%get_network_input_size(net)];
    }
//    get_batch(test, net.batch, X, y);
    clock_t start, end;
    cl_mem input_cl = cl_make_array(X, in_size);
    cl_mem truth_cl = cl_make_array(y, size);
 
    forward_network_gpu(net, input_cl, truth_cl, 1);
    start = clock();
    forward_network_gpu(net, input_cl, truth_cl, 1);
    end = clock();
    float gpu_sec = (float)(end-start)/CLOCKS_PER_SEC;
    printf("forward gpu: %f sec\n", gpu_sec);
    start = clock();
    backward_network_gpu(net, input_cl);
    end = clock();
    gpu_sec = (float)(end-start)/CLOCKS_PER_SEC;
    printf("backward gpu: %f sec\n", gpu_sec);
    //float gpu_cost = get_network_cost(net);
    float *gpu_out = calloc(size, sizeof(float));
    memcpy(gpu_out, get_network_output(net), size*sizeof(float));
 
    float *gpu_del = calloc(del_size, sizeof(float));
    memcpy(gpu_del, get_network_delta_layer(net, 0), del_size*sizeof(float));
 
/*
    start = clock();
    forward_network(net, X, y, 1);
    backward_network(net, X);
    float cpu_cost = get_network_cost(net);
    end = clock();
    float cpu_sec = (float)(end-start)/CLOCKS_PER_SEC;
    float *cpu_out = calloc(size, sizeof(float));
    memcpy(cpu_out, get_network_output(net), size*sizeof(float));
    float *cpu_del = calloc(del_size, sizeof(float));
    memcpy(cpu_del, get_network_delta_layer(net, 0), del_size*sizeof(float));
 
    float sum = 0;
    float del_sum = 0;
    for(i = 0; i < size; ++i) sum += pow(gpu_out[i] - cpu_out[i], 2);
    for(i = 0; i < del_size; ++i) {
        //printf("%f %f\n", cpu_del[i], gpu_del[i]);
        del_sum += pow(cpu_del[i] - gpu_del[i], 2);
    }
    printf("GPU cost: %f, CPU cost: %f\n", gpu_cost, cpu_cost);
    printf("gpu: %f sec, cpu: %f sec, diff: %f, delta diff: %f, size: %d\n", gpu_sec, cpu_sec, sum, del_sum, size);
    */
}
 
void test_col2im()
{
    float col[] =  {1,2,1,2,
                    1,2,1,2,
                    1,2,1,2,
                    1,2,1,2,
                    1,2,1,2,
                    1,2,1,2,
                    1,2,1,2,
                    1,2,1,2,
                    1,2,1,2};
    float im[16] = {0};
    int batch = 1;
    int channels = 1;
    int height=4;
    int width=4;
    int ksize = 3;
    int stride = 1;
    int pad = 0;
    col2im_gpu(col, batch,
         channels,  height,  width,
         ksize,  stride, pad, im);
    int i;
    for(i = 0; i < 16; ++i)printf("%f,", im[i]);
    printf("\n");
    /*
    float data_im[] = {
            1,2,3,4,
            5,6,7,8,
            9,10,11,12
    };
    float data_col[18] = {0};
    im2col_cpu(data_im,  batch,
      channels,   height,  width,
      ksize,   stride,  pad, data_col) ;
    for(i = 0; i < 18; ++i)printf("%f,", data_col[i]);
    printf("\n");
    */
}
 
#endif
 
void test_convolve_matrix()
{
    image dog = load_image("dog.jpg",300,400);
    printf("dog channels %d\n", dog.c);
 
    int size = 11;
    int stride = 4;
    int n = 40;
    float *filters = make_random_image(size, size, dog.c*n).data;
 
    int mw = ((dog.h-size)/stride+1)*((dog.w-size)/stride+1);
    int mh = (size*size*dog.c);
    float *matrix = calloc(mh*mw, sizeof(float));
 
    image edge = make_image((dog.h-size)/stride+1, (dog.w-size)/stride+1, n);
 
    int i;
    clock_t start = clock(), end;
    for(i = 0; i < 1000; ++i){
        im2col_cpu(dog.data,1, dog.c,  dog.h,  dog.w,  size,  stride, 0, matrix);
        gemm(0,0,n,mw,mh,1,filters,mh,matrix,mw,1,edge.data,mw);
    }
    end = clock();
    printf("Convolutions: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC);
    show_image_layers(edge, "Test Convolve");
    cvWaitKey(0);
}
 
void test_color()
{
    image dog = load_image("test_color.png", 300, 400);
    show_image_layers(dog, "Test Color");
}
 
void verify_convolutional_layer()
{
    srand(0);
    int i;
    int n = 1;
    int stride = 1;
    int size = 3;
    float eps = .00000001;
    image test = make_random_image(5,5, 1);
    convolutional_layer layer = *make_convolutional_layer(1,test.h,test.w,test.c, n, size, stride, 0, RELU,0,0,0);
    image out = get_convolutional_image(layer);
    float **jacobian = calloc(test.h*test.w*test.c, sizeof(float));
 
    forward_convolutional_layer(layer, test.data);
    image base = copy_image(out);
 
    for(i = 0; i < test.h*test.w*test.c; ++i){
        test.data[i] += eps;
        forward_convolutional_layer(layer, test.data);
        image partial = copy_image(out);
        subtract_image(partial, base);
        scale_image(partial, 1/eps);
        jacobian[i] = partial.data;
        test.data[i] -= eps;
    }
    float **jacobian2 = calloc(out.h*out.w*out.c, sizeof(float));
    image in_delta = make_image(test.h, test.w, test.c);
    image out_delta = get_convolutional_delta(layer);
    for(i = 0; i < out.h*out.w*out.c; ++i){
        out_delta.data[i] = 1;
        backward_convolutional_layer(layer, in_delta.data);
        image partial = copy_image(in_delta);
        jacobian2[i] = partial.data;
        out_delta.data[i] = 0;
    }
    int j;
    float *j1 = calloc(test.h*test.w*test.c*out.h*out.w*out.c, sizeof(float));
    float *j2 = calloc(test.h*test.w*test.c*out.h*out.w*out.c, sizeof(float));
    for(i = 0; i < test.h*test.w*test.c; ++i){
        for(j =0 ; j < out.h*out.w*out.c; ++j){
            j1[i*out.h*out.w*out.c + j] = jacobian[i][j];
            j2[i*out.h*out.w*out.c + j] = jacobian2[j][i];
            printf("%f %f\n", jacobian[i][j], jacobian2[j][i]);
        }
    }
 
 
    image mj1 = float_to_image(test.w*test.h*test.c, out.w*out.h*out.c, 1, j1);
    image mj2 = float_to_image(test.w*test.h*test.c, out.w*out.h*out.c, 1, j2);
    printf("%f %f\n", avg_image_layer(mj1,0), avg_image_layer(mj2,0));
    show_image(mj1, "forward jacobian");
    show_image(mj2, "backward jacobian");
}
 
void test_load()
{
    image dog = load_image("dog.jpg", 300, 400);
    show_image(dog, "Test Load");
    show_image_layers(dog, "Test Load");
}
void test_upsample()
{
    image dog = load_image("dog.jpg", 300, 400);
    int n = 3;
    image up = make_image(n*dog.h, n*dog.w, dog.c);
    upsample_image(dog, n, up);
    show_image(up, "Test Upsample");
    show_image_layers(up, "Test Upsample");
}
 
void test_rotate()
{
    int i;
    image dog = load_image("dog.jpg",300,400);
    clock_t start = clock(), end;
    for(i = 0; i < 1001; ++i){
        rotate_image(dog);
    }
    end = clock();
    printf("Rotations: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC);
    show_image(dog, "Test Rotate");
 
    image random = make_random_image(3,3,3);
    show_image(random, "Test Rotate Random");
    rotate_image(random);
    show_image(random, "Test Rotate Random");
    rotate_image(random);
    show_image(random, "Test Rotate Random");
}
 
void test_parser()
{
    network net = parse_network_cfg("cfg/trained_imagenet.cfg");
    save_network(net, "cfg/trained_imagenet_smaller.cfg");
}
 
void test_data()
{
    char *labels[] = {"cat","dog"};
    data train = load_data_image_pathfile_random("train_paths.txt", 101,labels, 2, 300, 400);
    free_data(train);
}
 
void train_asirra()
{
    network net = parse_network_cfg("cfg/imagenet.cfg");
    int imgs = 1000/net.batch+1;
    //imgs = 1;
    srand(2222222);
    int i = 0;
    char *labels[] = {"cat","dog"};
    clock_t time;
    while(1){
        i += 1;
        time=clock();
        data train = load_data_image_pathfile_random("data/assira/train.list", imgs*net.batch, labels, 2, 256, 256);
        normalize_data_rows(train);
        printf("Loaded: %lf seconds\n", sec(clock()-time));
        time=clock();
        //float loss = train_network_data(net, train, imgs);
        float loss = 0;
        printf("%d: %f, Time: %lf seconds\n", i*net.batch*imgs, loss, sec(clock()-time));
        free_data(train);
        if(i%10==0){
            char buff[256];
            sprintf(buff, "cfg/asirra_backup_%d.cfg", i);
            save_network(net, buff);
        }
        //lr *= .99;
    }
}
 
void train_imagenet()
{
    float avg_loss = 1;
    //network net = parse_network_cfg("/home/pjreddie/imagenet_backup/alexnet_1270.cfg");
    network net = parse_network_cfg("cfg/imagenet.cfg");
    printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
    int imgs = 1000/net.batch+1;
    srand(time(0));
    int i = 0;
    char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list");
    list *plist = get_paths("/data/imagenet/cls.train.list");
    char **paths = (char **)list_to_array(plist);
    printf("%d\n", plist->size);
    clock_t time;
    while(1){
        i += 1;
        time=clock();
        data train = load_data_random(imgs*net.batch, paths, plist->size, labels, 1000, 256, 256);
        //translate_data_rows(train, -144);
        normalize_data_rows(train);
        printf("Loaded: %lf seconds\n", sec(clock()-time));
        time=clock();
        #ifdef GPU
        float loss = train_network_data_gpu(net, train, imgs);
        avg_loss = avg_loss*.9 + loss*.1;
        printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs*net.batch);
        #endif
        free_data(train);
        if(i%10==0){
            char buff[256];
            sprintf(buff, "/home/pjreddie/imagenet_backup/imagenet_%d.cfg", i);
            save_network(net, buff);
        }
    }
}
 
void validate_imagenet(char *filename)
{
    int i;
    network net = parse_network_cfg(filename);
    srand(time(0));
 
    char **labels = get_labels("/home/pjreddie/data/imagenet/cls.val.labels.list");
    char *path = "/home/pjreddie/data/imagenet/cls.val.list";
 
    clock_t time;
    float avg_acc = 0;
    int splits = 50;
    for(i = 0; i < splits; ++i){
        time=clock();
        data val = load_data_image_pathfile_part(path, i, splits, labels, 1000, 256, 256);
        normalize_data_rows(val);
        printf("Loaded: %d images in %lf seconds\n", val.X.rows, sec(clock()-time));
        time=clock();
        #ifdef GPU
        float acc = network_accuracy_gpu(net, val);
        avg_acc += acc;
        printf("%d: %f, %f avg, %lf seconds, %d images\n", i, acc, avg_acc/(i+1), sec(clock()-time), val.X.rows);
        #endif
        free_data(val);
    }
}
 
void train_imagenet_small()
{
    network net = parse_network_cfg("cfg/imagenet_small.cfg");
    printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
    int imgs=1;
    srand(111222);
    int i = 0;
    char **labels = get_labels("/home/pjreddie/data/imagenet/cls.labels.list");
    list *plist = get_paths("/data/imagenet/cls.train.list");
    char **paths = (char **)list_to_array(plist);
    printf("%d\n", plist->size);
    clock_t time;
 
    i += 1;
    time=clock();
    data train = load_data_random(imgs*net.batch, paths, plist->size, labels, 1000, 256, 256);
    normalize_data_rows(train);
    printf("Loaded: %lf seconds\n", sec(clock()-time));
    time=clock();
#ifdef GPU
    float loss = train_network_data_gpu(net, train, imgs);
    printf("%d: %f, %lf seconds, %d images\n", i, loss, sec(clock()-time), i*imgs*net.batch);
#endif
    free_data(train);
    char buff[256];
    sprintf(buff, "/home/pjreddie/imagenet_backup/imagenet_backup_slower_larger_%d.cfg", i);
    save_network(net, buff);
}
 
void test_imagenet()
{
    network net = parse_network_cfg("cfg/imagenet_test.cfg");
    //imgs=1;
    srand(2222222);
    int i = 0;
    char **names = get_labels("cfg/shortnames.txt");
    clock_t time;
    char filename[256];
    int indexes[10];
    while(1){
        fgets(filename, 256, stdin);
        image im = load_image_color(filename, 256, 256);
        z_normalize_image(im);
        printf("%d %d %d\n", im.h, im.w, im.c);
        float *X = im.data;
        time=clock();
        float *predictions = network_predict(net, X);
        top_predictions(net, 10, indexes);
        printf("%s: Predicted in %f seconds.\n", filename, sec(clock()-time));
        for(i = 0; i < 10; ++i){
            int index = indexes[i];
            printf("%s: %f\n", names[index], predictions[index]);
        }
        free_image(im);
    }
}
 
void test_visualize(char *filename)
{
    network net = parse_network_cfg(filename);
    visualize_network(net);
    cvWaitKey(0);
}
void test_full()
{
    network net = parse_network_cfg("cfg/backup_1300.cfg");
    srand(2222222);
    int i,j;
    int total = 100;
    char *labels[] = {"cat","dog"};
    FILE *fp = fopen("preds.txt","w");
    for(i = 0; i < total; ++i){
        visualize_network(net);
        cvWaitKey(100);
        data test = load_data_image_pathfile_part("data/assira/test.list", i, total, labels, 2, 256, 256);
        image im = float_to_image(256, 256, 3,test.X.vals[0]);
        show_image(im, "input");
        cvWaitKey(100);
        normalize_data_rows(test);
        for(j = 0; j < test.X.rows; ++j){
            float *x = test.X.vals[j];
            forward_network(net, x, 0, 0);
            int class = get_predicted_class_network(net);
            fprintf(fp, "%d\n", class);
        }
        free_data(test);
    }
    fclose(fp);
}
 
void test_cifar10()
{
    network net = parse_network_cfg("cfg/cifar10_part5.cfg");
    data test = load_cifar10_data("data/cifar10/test_batch.bin");
    clock_t start = clock(), end;
    float test_acc = network_accuracy(net, test);
    end = clock();
    printf("%f in %f Sec\n", test_acc, (float)(end-start)/CLOCKS_PER_SEC);
    visualize_network(net);
    cvWaitKey(0);
}
 
void train_cifar10()
{
    srand(555555);
    network net = parse_network_cfg("cfg/cifar10.cfg");
    data test = load_cifar10_data("data/cifar10/test_batch.bin");
    int count = 0;
    int iters = 10000/net.batch;
    data train = load_all_cifar10();
    while(++count <= 10000){
        clock_t start = clock(), end;
        float loss = train_network_sgd(net, train, iters);
        end = clock();
        //visualize_network(net);
        //cvWaitKey(5000);
 
        //float test_acc = network_accuracy(net, test);
        //printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay);
        if(count%10 == 0){
            float test_acc = network_accuracy(net, test);
            printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay);
            char buff[256];
            sprintf(buff, "/home/pjreddie/cifar/cifar10_2_%d.cfg", count);
            save_network(net, buff);
        }else{
            printf("%d: Loss: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, (float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay);
        }
    }
    free_data(train);
}
 
void test_vince()
{
    network net = parse_network_cfg("cfg/vince.cfg");
    data train = load_categorical_data_csv("images/vince.txt", 144, 2);
    normalize_data_rows(train);
 
    int count = 0;
    //float lr = .00005;
    //float momentum = .9;
    //float decay = 0.0001;
    //decay = 0;
    int batch = 10000;
    while(++count <= 10000){
        float loss = train_network_sgd(net, train, batch);
        printf("%5f %5f\n",(double)count*batch/train.X.rows, loss);
    }
}
 
void test_nist_single()
{
    srand(222222);
    network net = parse_network_cfg("cfg/nist_single.cfg");
    data train = load_categorical_data_csv("data/mnist/mnist_tiny.csv", 0, 10);
    normalize_data_rows(train);
    float loss = train_network_sgd(net, train, 1);
    printf("Loss: %f, LR: %f, Momentum: %f, Decay: %f\n", loss, net.learning_rate, net.momentum, net.decay);
 
}
 
void test_nist()
{
    srand(222222);
    network net = parse_network_cfg("cfg/nist_final.cfg");
    data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
    translate_data_rows(test, -144);
    clock_t start = clock(), end;
    float test_acc = network_accuracy_multi(net, test,16);
    end = clock();
    printf("Accuracy: %f, Time: %lf seconds\n", test_acc,(float)(end-start)/CLOCKS_PER_SEC);
}
 
void train_nist()
{
    srand(222222);
    network net = parse_network_cfg("cfg/nist.cfg");
    data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10);
    data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
    translate_data_rows(train, -144);
    translate_data_rows(test, -144);
    int count = 0;
    int iters = 50000/net.batch;
    while(++count <= 2000){
        clock_t start = clock(), end;
        float loss = train_network_sgd(net, train, iters);
        end = clock();
        float test_acc = network_accuracy(net, test);
        printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC);
    }
}
 
void test_ensemble()
{
    int i;
    srand(888888);
    data d = load_categorical_data_csv("mnist/mnist_train.csv", 0, 10);
    normalize_data_rows(d);
    data test = load_categorical_data_csv("mnist/mnist_test.csv", 0,10);
    normalize_data_rows(test);
    data train = d;
    //   data *split = split_data(d, 1, 10);
    //   data train = split[0];
    //   data test = split[1];
    matrix prediction = make_matrix(test.y.rows, test.y.cols);
    int n = 30;
    for(i = 0; i < n; ++i){
        int count = 0;
        float lr = .0005;
        float momentum = .9;
        float decay = .01;
        network net = parse_network_cfg("nist.cfg");
        while(++count <= 15){
            float acc = train_network_sgd(net, train, train.X.rows);
            printf("Training Accuracy: %lf Learning Rate: %f Momentum: %f Decay: %f\n", acc, lr, momentum, decay );
            lr /= 2; 
        }
        matrix partial = network_predict_data(net, test);
        float acc = matrix_accuracy(test.y, partial);
        printf("Model Accuracy: %lf\n", acc);
        matrix_add_matrix(partial, prediction);
        acc = matrix_accuracy(test.y, prediction);
        printf("Current Ensemble Accuracy: %lf\n", acc);
        free_matrix(partial);
    }
    float acc = matrix_accuracy(test.y, prediction);
    printf("Full Ensemble Accuracy: %lf\n", acc);
}
 
void test_random_classify()
{
    network net = parse_network_cfg("connected.cfg");
    matrix m = csv_to_matrix("train.csv");
    //matrix ho = hold_out_matrix(&m, 2500);
    float *truth = pop_column(&m, 0);
    //float *ho_truth = pop_column(&ho, 0);
    int i;
    clock_t start = clock(), end;
    int count = 0;
    while(++count <= 300){
        for(i = 0; i < m.rows; ++i){
            int index = rand()%m.rows;
            //image p = float_to_image(1690,1,1,m.vals[index]);
            //normalize_image(p);
            forward_network(net, m.vals[index], 0, 1);
            float *out = get_network_output(net);
            float *delta = get_network_delta(net);
            //printf("%f\n", out[0]);
            delta[0] = truth[index] - out[0];
            // printf("%f\n", delta[0]);
            //printf("%f %f\n", truth[index], out[0]);
            //backward_network(net, m.vals[index], );
            update_network(net);
        }
        //float test_acc = error_network(net, m, truth);
        //float valid_acc = error_network(net, ho, ho_truth);
        //printf("%f, %f\n", test_acc, valid_acc);
        //fprintf(stderr, "%5d: %f Valid: %f\n",count, test_acc, valid_acc);
        //if(valid_acc > .70) break;
    }
    end = clock();
    FILE *fp = fopen("submission/out.txt", "w");
    matrix test = csv_to_matrix("test.csv");
    truth = pop_column(&test, 0);
    for(i = 0; i < test.rows; ++i){
        forward_network(net, test.vals[i],0, 0);
        float *out = get_network_output(net);
        if(fabs(out[0]) < .5) fprintf(fp, "0\n");
        else fprintf(fp, "1\n");
    }
    fclose(fp);
    printf("Neural Net Learning: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC);
}
 
void test_split()
{
    data train = load_categorical_data_csv("mnist/mnist_train.csv", 0, 10);
    data *split = split_data(train, 0, 13);
    printf("%d, %d, %d\n", train.X.rows, split[0].X.rows, split[1].X.rows);
}
 
void test_im2row()
{
    int h = 20;
    int w = 20;
    int c = 3;
    int stride = 1;
    int size = 11;
    image test = make_random_image(h,w,c);
    int mc = 1;
    int mw = ((h-size)/stride+1)*((w-size)/stride+1);
    int mh = (size*size*c);
    int msize = mc*mw*mh;
    float *matrix = calloc(msize, sizeof(float));
    int i;
    for(i = 0; i < 1000; ++i){
        im2col_cpu(test.data,1,  c,  h,  w,  size,  stride, 0, matrix);
        //image render = float_to_image(mh, mw, mc, matrix);
    }
}
 
void flip_network()
{
    network net = parse_network_cfg("cfg/voc_imagenet_orig.cfg");
    save_network(net, "cfg/voc_imagenet_rev.cfg");
}
 
void tune_VOC()
{
    network net = parse_network_cfg("cfg/voc_start.cfg");
    srand(2222222);
    int i = 20;
    char *labels[] = {"aeroplane","bicycle","bird","boat","bottle","bus","car","cat","chair","cow","diningtable","dog","horse","motorbike","person","pottedplant","sheep","sofa","train","tvmonitor"};
    float lr = .000005;
    float momentum = .9;
    float decay = 0.0001;
    while(i++ < 1000 || 1){
        data train = load_data_image_pathfile_random("/home/pjreddie/VOC2012/trainval_paths.txt", 10, labels, 20, 256, 256);
 
        image im = float_to_image(256, 256, 3,train.X.vals[0]);
        show_image(im, "input");
        visualize_network(net);
        cvWaitKey(100);
 
        translate_data_rows(train, -144);
        clock_t start = clock(), end;
        float loss = train_network_sgd(net, train, 10);
        end = clock();
        printf("%d: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", i, loss, (float)(end-start)/CLOCKS_PER_SEC, lr, momentum, decay);
        free_data(train);
        /*
           if(i%10==0){
           char buff[256];
           sprintf(buff, "/home/pjreddie/voc_cfg/voc_ramp_%d.cfg", i);
           save_network(net, buff);
           }
         */
        //lr *= .99;
    }
}
 
int voc_size(int x)
{
    x = x-1+3;
    x = x-1+3;
    x = x-1+3;
    x = (x-1)*2+1;
    x = x-1+5;
    x = (x-1)*2+1;
    x = (x-1)*4+11;
    return x;
}
 
image features_output_size(network net, IplImage *src, int outh, int outw)
{
    int h = voc_size(outh);
    int w = voc_size(outw);
    fprintf(stderr, "%d %d\n", h, w);
 
    IplImage *sized = cvCreateImage(cvSize(w,h), src->depth, src->nChannels);
    cvResize(src, sized, CV_INTER_LINEAR);
    image im = ipl_to_image(sized);
    //normalize_array(im.data, im.h*im.w*im.c);
    translate_image(im, -144);
    resize_network(net, im.h, im.w, im.c);
    forward_network(net, im.data, 0, 0);
    image out = get_network_image(net);
    free_image(im);
    cvReleaseImage(&sized);
    return copy_image(out);
}
 
void features_VOC_image_size(char *image_path, int h, int w)
{
    int j;
    network net = parse_network_cfg("cfg/voc_imagenet.cfg");
    fprintf(stderr, "%s\n", image_path);
 
    IplImage* src = 0;
    if( (src = cvLoadImage(image_path,-1)) == 0 ) file_error(image_path);
    image out = features_output_size(net, src, h, w);
    for(j = 0; j < out.c*out.h*out.w; ++j){
        if(j != 0) printf(",");
        printf("%g", out.data[j]);
    }
    printf("\n");
    free_image(out);
    cvReleaseImage(&src);
}
void visualize_imagenet_topk(char *filename)
{
    int i,j,k,l;
    int topk = 10;
    network net = parse_network_cfg("cfg/voc_imagenet.cfg");
    list *plist = get_paths(filename);
    node *n = plist->front;
    int h = voc_size(1), w = voc_size(1);
    int num = get_network_image(net).c;
    image **vizs = calloc(num, sizeof(image*));
    float **score = calloc(num, sizeof(float *));
    for(i = 0; i < num; ++i){
        vizs[i] = calloc(topk, sizeof(image));
        for(j = 0; j < topk; ++j) vizs[i][j] = make_image(h,w,3);
        score[i] = calloc(topk, sizeof(float));
    }
 
    int count = 0;
    while(n){
        ++count;
        char *image_path = (char *)n->val;
        image im = load_image(image_path, 0, 0);
        n = n->next;
        if(im.h < 200 || im.w < 200) continue;
        printf("Processing %dx%d image\n", im.h, im.w);
        resize_network(net, im.h, im.w, im.c);
        //scale_image(im, 1./255);
        translate_image(im, -144);
        forward_network(net, im.data, 0, 0);
        image out = get_network_image(net);
 
        int dh = (im.h - h)/(out.h-1);
        int dw = (im.w - w)/(out.w-1);
        //printf("%d %d\n", dh, dw);
        for(k = 0; k < out.c; ++k){
            float topv = 0;
            int topi = -1;
            int topj = -1;
            for(i = 0; i < out.h; ++i){
                for(j = 0; j < out.w; ++j){
                    float val = get_pixel(out, i, j, k);
                    if(val > topv){
                        topv = val;
                        topi = i;
                        topj = j;
                    }
                }
            }
            if(topv){
                image sub = get_sub_image(im, dh*topi, dw*topj, h, w);
                for(l = 0; l < topk; ++l){
                    if(topv > score[k][l]){
                        float swap = score[k][l];
                        score[k][l] = topv;
                        topv = swap;
 
                        image swapi = vizs[k][l];
                        vizs[k][l] = sub;
                        sub = swapi;
                    }
                }
                free_image(sub);
            }
        }
        free_image(im);
        if(count%50 == 0){
            image grid = grid_images(vizs, num, topk);
            //show_image(grid, "IMAGENET Visualization");
            save_image(grid, "IMAGENET Grid Single Nonorm");
            free_image(grid);
        }
    }
    //cvWaitKey(0);
}
 
void visualize_imagenet_features(char *filename)
{
    int i,j,k;
    network net = parse_network_cfg("cfg/voc_imagenet.cfg");
    list *plist = get_paths(filename);
    node *n = plist->front;
    int h = voc_size(1), w = voc_size(1);
    int num = get_network_image(net).c;
    image *vizs = calloc(num, sizeof(image));
    for(i = 0; i < num; ++i) vizs[i] = make_image(h, w, 3);
    while(n){
        char *image_path = (char *)n->val;
        image im = load_image(image_path, 0, 0);
        printf("Processing %dx%d image\n", im.h, im.w);
        resize_network(net, im.h, im.w, im.c);
        forward_network(net, im.data, 0, 0);
        image out = get_network_image(net);
 
        int dh = (im.h - h)/h;
        int dw = (im.w - w)/w;
        for(i = 0; i < out.h; ++i){
            for(j = 0; j < out.w; ++j){
                image sub = get_sub_image(im, dh*i, dw*j, h, w);
                for(k = 0; k < out.c; ++k){
                    float val = get_pixel(out, i, j, k);
                    //printf("%f, ", val);
                    image sub_c = copy_image(sub);
                    scale_image(sub_c, val);
                    add_into_image(sub_c, vizs[k], 0, 0);
                    free_image(sub_c);
                }
                free_image(sub);
            }
        }
        //printf("\n");
        show_images(vizs, 10, "IMAGENET Visualization");
        cvWaitKey(1000);
        n = n->next;
    }
    cvWaitKey(0);
}
 
void visualize_cat()
{
    network net = parse_network_cfg("cfg/voc_imagenet.cfg");
    image im = load_image("data/cat.png", 0, 0);
    printf("Processing %dx%d image\n", im.h, im.w);
    resize_network(net, im.h, im.w, im.c);
    forward_network(net, im.data, 0, 0);
 
    visualize_network(net);
    cvWaitKey(0);
}
 
void features_VOC_image(char *image_file, char *image_dir, char *out_dir, int flip, int interval)
{
    int i,j;
    network net = parse_network_cfg("cfg/voc_imagenet.cfg");
    char image_path[1024];
    sprintf(image_path, "%s/%s",image_dir, image_file);
    char out_path[1024];
    if (flip)sprintf(out_path, "%s%d/%s_r.txt",out_dir, interval, image_file);
    else sprintf(out_path, "%s%d/%s.txt",out_dir, interval, image_file);
    printf("%s\n", image_file);
 
    IplImage* src = 0;
    if( (src = cvLoadImage(image_path,-1)) == 0 ) file_error(image_path);
    if(flip)cvFlip(src, 0, 1);
    int w = src->width;
    int h = src->height;
    int sbin = 8;
    double scale = pow(2., 1./interval);
    int m = (w<h)?w:h;
    int max_scale = 1+floor((double)log((double)m/(5.*sbin))/log(scale));
    if(max_scale < interval) error("max_scale must be >= interval");
    image *ims = calloc(max_scale+interval, sizeof(image));
 
    for(i = 0; i < interval; ++i){
        double factor = 1./pow(scale, i);
        double ih =  round(h*factor);
        double iw =  round(w*factor);
        int ex_h = round(ih/4.) - 2;
        int ex_w = round(iw/4.) - 2;
        ims[i] = features_output_size(net, src, ex_h, ex_w);
 
        ih =  round(h*factor);
        iw =  round(w*factor);
        ex_h = round(ih/8.) - 2;
        ex_w = round(iw/8.) - 2;
        ims[i+interval] = features_output_size(net, src, ex_h, ex_w);
        for(j = i+interval; j < max_scale; j += interval){
            factor /= 2.;
            ih =  round(h*factor);
            iw =  round(w*factor);
            ex_h = round(ih/8.) - 2;
            ex_w = round(iw/8.) - 2;
            ims[j+interval] = features_output_size(net, src, ex_h, ex_w);
        }
    }
    FILE *fp = fopen(out_path, "w");
    if(fp == 0) file_error(out_path);
    for(i = 0; i < max_scale+interval; ++i){
        image out = ims[i];
        fprintf(fp, "%d, %d, %d\n",out.c, out.h, out.w);
        for(j = 0; j < out.c*out.h*out.w; ++j){
            if(j != 0)fprintf(fp, ",");
            float o = out.data[j];
            if(o < 0) o = 0;
            fprintf(fp, "%g", o);
        }
        fprintf(fp, "\n");
        free_image(out);
    }
    free(ims);
    fclose(fp);
    cvReleaseImage(&src);
}
 
void test_distribution()
{
    IplImage* img = 0;
    if( (img = cvLoadImage("im_small.jpg",-1)) == 0 ) file_error("im_small.jpg");
    network net = parse_network_cfg("cfg/voc_features.cfg");
    int h = img->height/8-2;
    int w = img->width/8-2;
    image out = features_output_size(net, img, h, w);
    int c = out.c;
    out.c = 1;
    show_image(out, "output");
    out.c = c;
    image input = ipl_to_image(img);
    show_image(input, "input");
    CvScalar s;
    int i,j;
    image affects = make_image(input.h, input.w, 1);
    int count = 0;
    for(i = 0; i<img->height; i += 1){
        for(j = 0; j < img->width; j += 1){
            IplImage *copy = cvCloneImage(img);
            s=cvGet2D(copy,i,j); // get the (i,j) pixel value
            printf("%d/%d\n", count++, img->height*img->width);
            s.val[0]=0;
            s.val[1]=0;
            s.val[2]=0;
            cvSet2D(copy,i,j,s); // set the (i,j) pixel value
            image mod = features_output_size(net, copy, h, w);
            image dist = image_distance(out, mod);
            show_image(affects, "affects");
            cvWaitKey(1);
            cvReleaseImage(&copy);
            //affects.data[i*affects.w + j] += dist.data[3*dist.w+5];
            affects.data[i*affects.w + j] += dist.data[1*dist.w+1];
            free_image(mod);
            free_image(dist);
        }
    }
    show_image(affects, "Origins");
    cvWaitKey(0);
    cvWaitKey(0);
}
 
void test_gpu_net()
{
    srand(222222);
    network net = parse_network_cfg("cfg/nist.cfg");
    data train = load_categorical_data_csv("data/mnist/mnist_train.csv", 0, 10);
    data test = load_categorical_data_csv("data/mnist/mnist_test.csv",0,10);
    translate_data_rows(train, -144);
    translate_data_rows(test, -144);
    int count = 0;
    int iters = 1000/net.batch;
    while(++count <= 5){
        clock_t start = clock(), end;
        float loss = train_network_sgd(net, train, iters);
        end = clock();
        float test_acc = network_accuracy(net, test);
        printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay);
    }
    #ifdef GPU
    count = 0;
    srand(222222);
    net = parse_network_cfg("cfg/nist.cfg");
    while(++count <= 5){
        clock_t start = clock(), end;
        float loss = train_network_sgd_gpu(net, train, iters);
        end = clock();
        float test_acc = network_accuracy(net, test);
        printf("%d: Loss: %f, Test Acc: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", count, loss, test_acc,(float)(end-start)/CLOCKS_PER_SEC, net.learning_rate, net.momentum, net.decay);
    }
    #endif
}
 
 
int main(int argc, char *argv[])
{
    if(argc < 2){
        fprintf(stderr, "usage: %s <function>\n", argv[0]);
        return 0;
    }
    if(0==strcmp(argv[1], "train")) train_imagenet();
    else if(0==strcmp(argv[1], "asirra")) train_asirra();
    else if(0==strcmp(argv[1], "nist")) train_nist();
    else if(0==strcmp(argv[1], "train_small")) train_imagenet_small();
    else if(0==strcmp(argv[1], "test_correct")) test_gpu_net();
    else if(0==strcmp(argv[1], "test")) test_imagenet();
    else if(0==strcmp(argv[1], "visualize")) test_visualize(argv[2]);
    else if(0==strcmp(argv[1], "valid")) validate_imagenet(argv[2]);
    #ifdef GPU
    else if(0==strcmp(argv[1], "test_gpu")) test_gpu_blas();
    #endif
    test_parser();
    fprintf(stderr, "Success!\n");
    return 0;
}