import cv2
|
import fetch_data
|
from glob import glob
|
import math
|
import matplotlib.pyplot as plt
|
import matplotlib.image as mpimage
|
import numpy as np
|
import os
|
import pandas as pd
|
import pickle
|
import random
|
import transform_data
|
|
from config import Config
|
|
|
class Backgrounds:
|
"""
|
Container class for all background images for generator
|
Referenced from geaxgx's playing-card-detection: https://github.com/geaxgx/playing-card-detection
|
"""
|
def __init__(self, images=None, dumps_dir='data/dtd/images'):
|
if images is not None:
|
self._images = images
|
else: # load from pickle
|
if not os.path.exists(dumps_dir):
|
print('Warning: directory for dump %s doesn\'t exist' % dumps_dir)
|
return
|
self._images = []
|
for dump_name in glob(dumps_dir + '/*.pck'):
|
with open(dump_name, 'rb') as dump:
|
print('Loading ' + dump_name)
|
images = pickle.load(dump)
|
self._images += images
|
if len(self._images) == 0:
|
self._images = load_dtd()
|
print('# of images loaded: %d' % len(self._images))
|
|
def get_random(self, display=False):
|
bg = self._images[random.randint(0, len(self._images) - 1)]
|
if display:
|
plt.show(bg)
|
return bg
|
|
|
def load_dtd(dtd_dir='data/dtd/images', dump_it=True, dump_batch_size=1000):
|
"""
|
Load Describable Texture Dataset (DTD) from local
|
:param dtd_dir: path of the DTD images folder
|
:param dump_it: flag for pickling it
|
:param dump_batch_size: # of images stored per pickle file
|
:return: list of all DTD images
|
"""
|
if not os.path.exists(dtd_dir):
|
print('Warning: directory for DTD %s doesn\'t exist.' % dtd_dir)
|
print('You can download the dataset using this command:'
|
'!wget https://www.robots.ox.ac.uk/~vgg/data/dtd/download/dtd-r1.0.1.tar.gz')
|
return []
|
bg_images = []
|
# Search the directory for all images, and append them
|
for subdir in glob(dtd_dir + "/*"):
|
for f in glob(subdir + "/*.jpg"):
|
bg_images.append(mpimage.imread(f))
|
print("# of images loaded :", len(bg_images))
|
|
# Save them as a pickle if necessary
|
if dump_it:
|
for i in range(math.ceil(len(bg_images) / dump_batch_size)):
|
dump_name = '%s/dtd_dump_%d.pck' % (dtd_dir, i)
|
with open(dump_name, 'wb') as dump:
|
print('Dumping ' + dump_name)
|
pickle.dump(bg_images[i * dump_batch_size:(i + 1) * dump_batch_size], dump)
|
|
return bg_images
|
|
|
def apply_bounding_box(img, card_info, display=False):
|
"""
|
Given a card image, extract specific features that can be used to train a model.
|
Note: Mana & set symbols are deprecated from the feature list. Refer to previous commits for their implementation:
|
https://github.com/hj3yoo/mtg_card_detector/tree/bb34d4e13da0f4753fbdefee837f54b16149d3ef
|
:param img: image of the card
|
:param card_info: characteristics of this card
|
:param display: flag for displaying the extracted features
|
:return:
|
"""
|
# List of detected objects to be fed into the neural net
|
# The first object is the entire card
|
detected_object_list = [transform_data.ExtractedObject('card', [(0, 0), (len(img[0]), 0), (len(img[0]), len(img)),
|
(0, len(img))])]
|
return detected_object_list
|
|
|
def main():
|
random.seed()
|
#bg_images = load_dtd()
|
#bg = Backgrounds()
|
#bg.get_random(display=True)
|
|
card_pool = pd.DataFrame()
|
for set_name in Config.all_set_list:
|
df = fetch_data.load_all_cards_text('%s/csv/%s.csv' % (Config.data_dir, set_name))
|
#for _ in range(3):
|
# card_info = df.iloc[random.randint(0, df.shape[0] - 1)]
|
# # Currently ignoring planeswalker cards due to their different card layout
|
# is_planeswalker = 'Planeswalker' in card_info['type_line']
|
# if not is_planeswalker:
|
# card_pool = card_pool.append(card_info)
|
card_pool = card_pool.append(df)
|
'''
|
print(card_pool)
|
mana_symbol_set = set()
|
for _, card_info in card_pool.iterrows():
|
has_mana_cost = isinstance(card_info['mana_cost'], str)
|
if has_mana_cost:
|
mana_cost = re.findall('\{(.*?)\}', card_info['mana_cost'])
|
for symbol in mana_cost:
|
mana_symbol_set.add(symbol)
|
|
print(mana_symbol_set)
|
'''
|
|
for _, card_info in card_pool.iterrows():
|
img_name = '%s/card_img/png/%s/%s_%s.png' % (Config.data_dir, card_info['set'], card_info['collector_number'],
|
fetch_data.get_valid_filename(card_info['name']))
|
print(img_name)
|
card_img = cv2.imread(img_name)
|
if card_img is None:
|
fetch_data.fetch_card_image(card_info, out_dir='../usb/data/png/%s' % card_info['set'])
|
card_img = cv2.imread(img_name)
|
detected_object_list = apply_bounding_box(card_img, card_info, display=True)
|
print(detected_object_list)
|
|
return
|
|
|
if __name__ == '__main__':
|
main()
|