#include "binary_convolution.h"
|
|
int ai2_bin_dp(BINARY_WORD *a, BINARY_WORD *b, dim3 vdim) { // TODO unroll
|
int accumulator = 0;
|
for (int z = 0; z < vdim.z / BITS_PER_BINARY_WORD; z++) {
|
for (int y = 0; y < vdim.y; y++) {
|
for (int x = 0; x < vdim.x; x++) {
|
int idx = z*vdim.y*vdim.x + y*vdim.x + x;
|
accumulator += __builtin_popcount(~(a[idx] ^ b[idx])); // count the XNOR of the two bit vectors
|
}
|
}
|
}
|
|
return accumulator;
|
}
|
|
/**
|
* Pre-conditions:
|
* alpha_volume is an array of size x*y*z.
|
* alpha_plane is an array of size x*y.
|
* alpha_volume (x,y,z) is transposed to (z,x,y).
|
*/
|
void ai2_calc_alpha(float *alpha_plane, float *alpha_volume, dim3 vdim) {
|
for (int y = 0; y < vdim.y; ++y) {
|
for (int x = 0; x < vdim.x; ++x) {
|
int out = y * vdim.x + x;
|
double accum = 0.0;
|
for (int z = 0; z < vdim.z; ++z) {
|
accum += alpha_volume[out * vdim.z + z];
|
}
|
|
alpha_plane[out] = accum / vdim.z;
|
}
|
}
|
}
|
|
/** @brief Wrapper function for generating the beta scaling factor */
|
void ai2_calc_beta(float *beta_plane, float *beta_volume, dim3 vdim) {
|
ai2_calc_alpha(beta_plane, beta_volume, vdim);
|
}
|
|
/** @brief Set the bit in a binary word */
|
void ai2_bitset(BINARY_WORD *bword, unsigned int position) {
|
BINARY_WORD mask = (1 << position);
|
*bword = *bword | mask;
|
}
|
|
/** @brief Checks that the bit is set in a binary word */
|
int ai2_is_set(BINARY_WORD bword, unsigned int position) {
|
unsigned int position_complement = (BITS_PER_BINARY_WORD - 1) - position; // number of leading bits before the bit position of interest
|
bword = (bword << position_complement); // zero out leading bits
|
bword = (bword >> (BITS_PER_BINARY_WORD - 1)); // shift bit position of interest to the 0th position
|
return (bword & 0x1); // test if bit position of interest is set
|
}
|
|
void ai2_flt_to_bin(BINARY_WORD *binary_vol, float *real_vol, dim3 dim) {
|
ai2_transpose3D(real_vol, dim); // (x,y,z) -> (z,x,y)
|
|
int sz = dim.x * dim.y * dim.z;
|
for (int i = 0; i < sz; i += BITS_PER_BINARY_WORD) {
|
BINARY_WORD tmp = 0x00000000;
|
for (int x = 0; x < BITS_PER_BINARY_WORD; ++x) {
|
int waddr = x + i;
|
if (signbit(real_vol[waddr]) == 0)
|
ai2_bitset(&tmp, (BITS_PER_BINARY_WORD - 1) - x);
|
}
|
binary_vol[i / BITS_PER_BINARY_WORD] = tmp;
|
}
|
}
|
|
void ai2_bin_to_flt(float *real_vol, BINARY_WORD *binary_vol, dim3 dim) { // TODO unit tests
|
for (int z = 0; z < dim.z; z++) {
|
for (int y = 0; y < dim.y; y++) {
|
for (int x = 0; x < dim.x / BITS_PER_BINARY_WORD; x++) { // TODO boundary checks, for uneven input
|
BINARY_WORD word = binary_vol[z*dim.y*dim.x + y*dim.x + x];
|
for (int t = 0; t < BITS_PER_BINARY_WORD; ++t) {
|
int oidx = z*dim.y*dim.x + y*dim.x + x * BITS_PER_BINARY_WORD + t;
|
if (ai2_is_set(word, t))
|
real_vol[oidx] = 1.f;
|
else
|
real_vol[oidx] = -1.f;
|
}
|
}
|
}
|
}
|
|
// Transpose channels back to output
|
ai2_transpose3D(real_vol, dim); // (z,y,x) -> (x,y,z)
|
}
|
|
/* @brief: input is padded.
|
*/
|
void ai2_bin_conv2D(float *output, const BINARY_WORD *input, const BINARY_WORD *weights, int ix, int iy, int wx, int wy, int pad, int stride) {
|
|
int r, rd, c, cd;
|
int wx_2 = wx / 2;
|
int wy_2 = wy / 2;
|
|
// Indexing for output pixels. x = [wx_2, ix + wx_2 - 1], y = [wy_2, iy + wy_2 - 1]
|
int sx = pad; // start x
|
int ex = ix + pad - 1; // end x
|
int sy = pad; // start y
|
int ey = iy + pad - 1; // end y
|
|
// Indexing for weights
|
int wsx, wex, wsy, wey;
|
if (wx % 2 == 1) { // odd weights
|
wsx = -wx_2; wex = wx_2 + 1;
|
wsy = -wy_2; wey = wy_2 + 1;
|
}
|
else {
|
wsx = -wx_2; wex = wx_2;
|
wsy = -wy_2; wey = wy_2;
|
}
|
|
int px = ix + 2*pad;
|
//int py = iy + 2*pad;
|
|
for (r = sy; r <= ey; ++r) {
|
for (c = sx; c <= ex; ++c) {
|
int accumulator = 0;
|
for (rd = wsy; rd < wey; ++rd) {
|
for (cd = wsx; cd < wex; ++cd) {
|
int iidx = (r+rd)*px + (c+cd);
|
BINARY_WORD pixel = input[iidx];
|
//BINARY_WORD pixel = 0xFFFFFFFF;
|
//BINARY_WORD weight = 0xFFFFFFFF;
|
int widx = (rd + wy_2)*wx + (cd+wx_2);
|
BINARY_WORD weight = weights[widx];
|
accumulator += __builtin_popcount(~(pixel ^ weight));
|
}
|
}
|
|
// Padded space
|
int oidx = r*px + c;
|
output[oidx] += (float) accumulator;
|
}
|
}
|
|
//for (r = sy; r <= ey; ++r) {
|
// for (c = sx; c <= ex; ++c) {
|
// int accumulator = 0;
|
// for (rd = -wy_2; rd < wy_2; ++rd) {
|
// for (cd = -wx_2; cd < wx_2; ++cd) {
|
// int iidx = (r+rd)*px + (c+cd);
|
// BINARY_WORD pixel = input[iidx];
|
// //BINARY_WORD pixel = 0xFFFFFFFF;
|
// //BINARY_WORD weight = 0xFFFFFFFF;
|
// int widx = (rd + wy_2)*wx + (cd+wx_2);
|
// BINARY_WORD weight = weights[widx];
|
// accumulator += __builtin_popcount(~(pixel ^ weight));
|
// }
|
// }
|
|
// // Padded space
|
// int oidx = r*px + c;
|
// output[oidx] += (float) accumulator;
|
// }
|
//}
|
|
//ai2_bin_conv_within_boundary(output, input, weights, ix, iy, wx, wy, stride);
|
//ai2_bin_conv_borders(output, input, weights, ix, iy, wx, wy, stride);
|
}
|
|
void ai2_pointwise_mul_mm(float *output, const float *input, int N) {
|
int i = 0;
|
|
while (i + 8 <= N) {
|
output[i+0] *= input[i+0];
|
output[i+1] *= input[i+1];
|
output[i+2] *= input[i+2];
|
output[i+3] *= input[i+3];
|
output[i+4] *= input[i+4];
|
output[i+5] *= input[i+5];
|
output[i+6] *= input[i+6];
|
output[i+7] *= input[i+7];
|
|
i += 8;
|
}
|
|
while (++i < N) // Finish iteration that's leftover (e.g., last batch not divisible by 8 exactly)
|
output[i] *= input[i];
|
}
|
|
/** @brief Performs a tiled pointwise matrix multiplication between two 2D tensors
|
* Pre-conditions: wx < ix, and wy < iy
|
*/
|
void ai2_pointwise_mul_mm_2d(float *output, const float *alpha, int ix, int iy, int wx, int wy, int pad) {
|
// Slower version
|
// for (int y = 0; y < iy; ++y)
|
// for (int x = 0; x < ix; x++)
|
// output[y*ix+x] *= input[(y % wy)*wx + (x % wx)];
|
|
// Stride prefetch optimized
|
for (int s = 0; s < wy; ++s) { // for each strip
|
const float *strip_ptr = &alpha[s*wx];
|
for (int y = pad; y < pad + (iy / wy); ++y) { //
|
int stride = y*((ix+2*pad)*wy) + s*(ix+2*pad);
|
float *output_ptr = &output[stride];
|
|
for (int x = 0; x < ix; ++x) {
|
output_ptr[x] *= strip_ptr[x % wx];
|
}
|
}
|
}
|
}
|
|
void ai2_setFltInput(ai2_bin_conv_layer *layer, float *new_input) {
|
if (new_input != NULL) {
|
if (layer->input != NULL)
|
free(layer->input);
|
layer->input = new_input;
|
|
dim3 dim;
|
dim.x = layer->px;
|
dim.y = layer->py;
|
dim.z = layer->c;
|
|
// Binarize input
|
ai2_flt_to_bin(layer->binary_input, layer->input, dim);
|
|
float *new_beta = (float *) calloc (dim.x * dim.y, sizeof(float));
|
ai2_setFltBeta(layer, new_beta);
|
|
// layer->input is transposed to (z,x,y) already
|
ai2_calc_beta(layer->beta, layer->input, dim);
|
}
|
}
|
|
void ai2_setBinInput(ai2_bin_conv_layer *layer, BINARY_WORD *new_input) {
|
if (new_input != NULL) {
|
if (layer->binary_input != NULL)
|
free(layer->binary_input);
|
layer->binary_input = new_input;
|
}
|
}
|
|
void ai2_setFltWeights(ai2_bin_conv_layer *layer, float *new_weights) {
|
if (new_weights != NULL) {
|
if (layer->weights != NULL)
|
free(layer->weights);
|
layer->weights = new_weights;
|
|
dim3 dim;
|
dim.x = layer->wx;
|
dim.y = layer->wy;
|
dim.z = layer->c;
|
|
ai2_flt_to_bin(layer->binary_weights, layer->weights, dim);
|
|
// Calculate alpha
|
if (layer->alpha != NULL)
|
free(layer->alpha);
|
|
layer->alpha = (float *) calloc (dim.x * dim.y, sizeof(float));
|
// layer->weights is already transposed to (z,x,y) from ai2_flt_to_bin()
|
ai2_calc_alpha(layer->alpha, layer->weights, dim);
|
}
|
}
|
|
void ai2_setBinWeights(ai2_bin_conv_layer *layer, BINARY_WORD *new_weights) {
|
if (new_weights != NULL) {
|
if (layer->binary_weights != NULL)
|
free(layer->binary_weights);
|
layer->binary_weights = new_weights;
|
}
|
}
|
|
void ai2_setFltOutput(ai2_bin_conv_layer *layer, float *new_output) {
|
if (new_output != NULL) {
|
if (layer->output != NULL)
|
free(layer->output);
|
layer->output = new_output;
|
}
|
}
|
|
void ai2_setBinOutput(ai2_bin_conv_layer *layer, BINARY_WORD *new_output) {
|
if (new_output != NULL) {
|
if (layer->binary_output != NULL)
|
free(layer->binary_output);
|
layer->binary_output = new_output;
|
}
|
}
|
|
void ai2_setFltAlpha(ai2_bin_conv_layer *layer, float *new_alpha) {
|
if (new_alpha != NULL) {
|
if (layer->alpha != NULL)
|
free(layer->alpha);
|
layer->alpha = new_alpha;
|
}
|
}
|
|
void ai2_setFltBeta(ai2_bin_conv_layer *layer, float *new_beta) {
|
if (new_beta != NULL) {
|
if (layer->beta != NULL)
|
free(layer->beta);
|
layer->beta = new_beta;
|
}
|
}
|
|
void ai2_setFltNewBeta(ai2_bin_conv_layer *layer, float *new_new_beta) {
|
if (new_new_beta != NULL) {
|
if (layer->new_beta != NULL)
|
free(layer->new_beta);
|
layer->new_beta = new_new_beta;
|
}
|
}
|
|
float* ai2_getFltOutput(ai2_bin_conv_layer *layer) {
|
//if (layer->output != NULL && layer->binary_output != NULL) {
|
if (layer->output != NULL) {
|
|
// The idea here was that all intermediate states are stored in the binary output.
|
// Whenever the user needs the real-valued output, the conversion happens at this function call.
|
//dim3 dim;
|
//dim.x = layer->px;
|
//dim.y = layer->py;
|
//dim.z = layer->batch;
|
//ai2_bin_to_flt(layer->output, layer->binary_output, dim);
|
|
return layer->output;
|
}
|
else
|
return NULL;
|
}
|
|
void ai2_transpose3D(float *data, dim3 d) {
|
// Slow transpose for correctness
|
|
// (x,y,z) becomes (z,x,y). Requires two transposes:
|
// (x,y,z) -> (x,z,y).
|
// (x,z,y) -> (z,x,y).
|
|
// Intermediate buffer
|
float *new_data = (float *) calloc (d.x * d.y * d.z, sizeof(float));
|
|
// Transpose y and z axis.
|
// (x,y,z) -> (x,z,y);
|
for (int y = 0; y < d.y; ++y) {
|
for (int z = 0; z < d.z; ++z) {
|
for (int x = 0; x < d.x; ++x) {
|
new_data[y*d.x*d.z + z*d.x + x] = data[z*d.x*d.y + y*d.x + x];
|
//new_data[z*d.y*d.x + y*d.x + x] = data[y*d.x*d.z + z*d.x + x];
|
}
|
}
|
}
|
|
// Transpose x and z axis.
|
// (x,z,y) -> (z,x,y)
|
for (int y = 0; y < d.y; ++y) {
|
for (int x = 0; x < d.x; ++x) {
|
for (int z = 0; z < d.z; ++z) {
|
data[y*d.z*d.x + x*d.z + z] = new_data[y*d.x*d.z + x + z*d.x];
|
}
|
}
|
}
|
|
free(new_data);
|
}
|
|
int ai2_isFloatWhole(float f) { // TODO unit test
|
return (ceilf(f) == f) ? 1 : 0;
|
}
|
|
/* @brief Initialize and create all memory arrays for this layer
|
* b - batches (number of filter batches)
|
* c - input channels
|
* ix - input width
|
* iy - input height
|
* wx - weight/filter width
|
* wy - weight/filter height
|
* s - stride between sliding windows
|
* pad - the amount of padding
|
*/
|
ai2_bin_conv_layer ai2_make_bin_conv_layer(int b, int c, int ix, int iy, int wx, int wy, int s, int pad) {
|
// http://cs231n.github.io/convolutional-networks/
|
// See: spatial arrangement section for determining what the output size will be
|
float output_size = ((ix - wx + 2 * pad) / s) + 1;
|
if (ai2_isFloatWhole(output_size) == 0) {
|
fprintf(stderr, "ERROR! conv layer of (b,c,ix,iy,s,pad) = (%d, %d, %d, %d, %d, %d) will give "
|
" invalid output dimension: %fx%f\n", b, c, ix, iy, s, pad, output_size, output_size);
|
exit(1);
|
}
|
|
// TODO: Support strided output
|
if (s != 1) {
|
fprintf(stderr, "ERROR! Only stride values of 1 is supported\n");
|
exit(1);
|
}
|
|
// padded input size
|
int px = (int) ix + 2*pad;
|
int py = (int) iy + 2*pad;
|
|
ai2_bin_conv_layer l = {0}; // initialize all to 0
|
l.input = (float *) calloc (c * px * py, sizeof(float)); // is padded
|
l.binary_input = (BINARY_WORD *) calloc (c * px * py / BITS_PER_BINARY_WORD, sizeof(BINARY_WORD)); // is padded
|
|
dim3 dim;
|
dim.x = px;
|
dim.y = py;
|
dim.z = c;
|
ai2_flt_to_bin(l.binary_input, l.input, dim);
|
|
l.weights = (float *) calloc (b * c * wx * wy, sizeof(float));
|
l.binary_weights = (BINARY_WORD *) calloc (b * c * wx * wy / BITS_PER_BINARY_WORD, sizeof(BINARY_WORD));
|
|
l.output = (float *) calloc (c * px * py, sizeof(float)); // is padded
|
l.new_beta = (float *) calloc(px * py, sizeof(float)); // is padded
|
|
l.batch = b;
|
l.c = c;
|
l.h = iy;
|
l.w = ix;
|
l.stride = s;
|
l.pad = pad;
|
l.px = px;
|
l.py = py;
|
l.wx = wx;
|
l.wy = wy;
|
|
// The following parameters are uninitialized and should be set elsewhere:
|
// l.beta - padded
|
// l.alpha - not padded
|
|
return l;
|
}
|
|
void ai2_free_bin_conv_layer(ai2_bin_conv_layer *layer) {
|
if (layer->input) free (layer->input);
|
if (layer->binary_input) free(layer->binary_input);
|
if (layer->weights) free (layer->weights);
|
if (layer->binary_weights) free(layer->binary_weights);
|
if (layer->output) free(layer->output);
|
if (layer->binary_output) free (layer->binary_output);
|
if (layer->alpha) free(layer->alpha);
|
if (layer->beta) free(layer->beta);
|
if (layer->new_beta) free(layer->new_beta);
|
}
|
|
void ai2_throw_error(char *str) {
|
fprintf(stderr, "ERROR: %s\n", str);
|
exit(1);
|
}
|
|
void ai2_bin_forward(ai2_bin_conv_layer *l) {
|
if (l->input == NULL) ai2_throw_error("Input was not allocated and set in this layer");
|
if (l->weights == NULL) ai2_throw_error("Weights was not allocated and set in this layer");
|
if (l->output == NULL) ai2_throw_error("Output was not allocated and set in this layer");
|
if (l->alpha == NULL) ai2_throw_error("Alpha was not allocated and set in this layer");
|
if (l->beta == NULL) ai2_throw_error("Beta was not allocated and set in this layer");
|
|
if (l->c % 32 != 0) ai2_throw_error("Channel is not divisible by 32. Need to implement mask "
|
"before supporting arbitrary channel size. For now, "
|
"set the channel size to the nearest multiple of 32 "
|
"and ignore any ''extra'' channels unused.");
|
|
l->c /= BITS_PER_BINARY_WORD; // For compensating with doing more work per word
|
|
float *output = l->output;
|
float *alpha = l->alpha;
|
float *beta = l->beta;
|
int px = l->px;
|
int py = l->py;
|
BINARY_WORD *binary_weights = l->binary_weights;
|
|
for (int z = 0; z < l->batch; ++z) { // for each filter map
|
BINARY_WORD *binary_input = l->binary_input;
|
for (int c = 0; c < l->c; ++c) { // for each input channel
|
ai2_bin_conv2D(output, binary_input, binary_weights, l->w, l->h, l->wx, l->wy, l->pad, l->stride);
|
binary_input += px*py; // increment with next 2D plane
|
binary_weights += l->wx*l->wy; // increment with next 2D plane
|
|
ai2_pointwise_mul_mm(output, beta, px*py);
|
ai2_pointwise_mul_mm_2d(output, alpha, l->w, l->h, l->wx, l->wy, l->pad);
|
}
|
}
|
}
|
|
// Deprecated
|
//double ai2_bin_conv_benchmark(ConvolutionArgs conv_args) {
|
// printf("Running Binary Convolution test!\n");
|
//
|
// size_t ix, iy, iz, wx, wy, wz, L, stride;
|
// ix = conv_args.input.x;
|
// iy = conv_args.input.y;
|
// iz = conv_args.input.z;
|
// wx = conv_args.weights.x;
|
// wy = conv_args.weights.y;
|
// wz = conv_args.weights.z;
|
// L = BITS_PER_BINARY_WORD;
|
// stride = 1;
|
//
|
// printf("Input size (num elements, xyz): %zu %zu %zu\n", ix, iy, iz);
|
// printf("Weights size (num elements. xyz): %zu %zu %zu\n", wx, wy, wz);
|
//
|
// double sz_input_elements = ix * iy * iz;
|
// double sz_input_bytes = getSizeBytesBinaryArray(conv_args.input);
|
// double sz_weight_bytes = getSizeBytesBinaryArray(conv_args.weights);
|
//
|
// printf("Input Size (MB): %f\n", sz_input_bytes / (1 << 20));
|
// printf("Weight Size (MB): %f\n", sz_weight_bytes / (1 << 20));
|
//
|
// BINARY_WORD *binary_input = mallocBinaryVolume(conv_args.input);
|
// BINARY_WORD *binary_weights = mallocBinaryVolume(conv_args.weights);
|
// BINARY_WORD *b_input = binary_input; // alias
|
// BINARY_WORD *b_weight = binary_weights; // alias
|
// float *output = mallocFloatVolume(conv_args.output);
|
// float *output_ptr = output;
|
// float *beta = (float *) malloc(sizeof(float) * ix * iy); // we assume beta is given to us
|
// float *alpha = (float *) malloc(sizeof(float) * wx * wy); // we assume alpha is given to us
|
// float *new_output = mallocFloatVolume(conv_args.output);
|
// //float *new_output_ptr = new_output;
|
// float *new_beta = (float *) malloc(sizeof(float) * ix * iy);
|
// //float *new_beta_ptr = new_beta;
|
//
|
// // Scale number of computations because we're packing.
|
// // After this point, you should not have to reason about input dimensions for input and weights.
|
// iz /= BITS_PER_BINARY_WORD;
|
// wz /= BITS_PER_BINARY_WORD;
|
//
|
// // Calculate time taken by a request
|
// struct timeval start_time;
|
// gettimeofday(&start_time, NULL);
|
//
|
// // Preprocessing
|
// int pad = wx/2;
|
//
|
// for (int z = 0; z < iz; ++z) { // number of channels
|
// ai2_bin_conv2D(output_ptr, b_input, b_weight, ix, iy, wx, wy, pad, stride);
|
// b_input += ix*iy; // increment with next 2D plane
|
// b_weight += wx*wy; // increment with next 2D plane
|
//
|
// ai2_pointwise_mul_mm(output_ptr, beta, ix*iy);
|
// ai2_pointwise_mul_mm_2d(output_ptr, alpha, ix, iy, wx, wy, pad);
|
// }
|
//
|
// // copy to new array (need to wrap this around); TODO.
|
// struct timeval end_time;
|
// gettimeofday(&end_time, NULL);
|
//
|
// struct timeval diff_time;
|
// timersub(&end_time, &start_time, &diff_time);
|
// double time_conv_s = diff_time.tv_sec + diff_time.tv_usec * 1e-6;
|
// double time_conv_ms = time_conv_s * 1000.0;
|
//
|
// double model_ops = (3*ix*iy*wx*wy*wz/L) + 2*ix*iy + ix*iy*iz;
|
// double conv_ops_s = 1e-9 * model_ops / time_conv_s;
|
// double conv_bandwidth_gb_s = 1e-9 * sz_input_bytes / (time_conv_ms / 1000.0);
|
// double conv_bandwidth_gelement_s = 1e-9 * sz_input_elements / (time_conv_ms / 1000.0);
|
//
|
// printf("Execution Time (ms): %f\n", time_conv_ms);
|
// printf("Binary Convolution OPS/s (GOPS/s): %f\n", conv_ops_s);
|
// printf("Binary Convolution Bandwidth (GB/s): %f\n", conv_bandwidth_gb_s);
|
// printf("Binary Convolution Bandwidth (GElements/s): %f\n\n", conv_bandwidth_gelement_s);
|
//
|
// free(binary_input);
|
// free(binary_weights);
|
// free(output);
|
// free(beta);
|
// free(alpha);
|
// free(new_output);
|
// free(new_beta);
|
//
|
// return time_conv_ms;
|
//}
|
|
// double ai2_bin_conv_benchmark(ConvolutionArgs conv_args);
|
|
//void benchmark() {
|
// int ix, iy, iz, wx, wy, wz;
|
// iz = (1 << 9) * BITS_PER_BINARY_WORD;
|
// ix = 227; // x == y for square face
|
// iy = 227;
|
// wx = 3; // x == y for a square face
|
// wy = 3;
|
// wz = iz;
|
//
|
// int runs = 1;
|
// double accum_binary = 0;
|
// double accum_real = 0;
|
// ConvolutionArgs conv_args = initArgs(ix, iy, iz, wx, wy, wz);
|
// for (int i = 0; i < runs; ++i) {
|
// double t_binary_convolve = ai2_bin_conv_benchmark(conv_args);
|
// double t_real_convolve = run_convolve2D_real(conv_args);
|
// printf("t binary = %lf\n", t_binary_convolve);
|
// printf("t real = %lf\n", t_real_convolve);
|
// accum_binary += t_binary_convolve;
|
// accum_real += t_real_convolve;
|
// }
|
//
|
// accum_binary /= runs;
|
// accum_real /= runs;
|
// printf("Average convolution pass binary (ms): %lf\n", accum_binary);
|
// printf("Average convolution pass flt (ms): %lf\n", accum_real);
|
// printf("Speedup (Binary over Real): %lfx\n", accum_real / accum_binary);
|
// exit(1);
|
//}
|