1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
| #include "activation_layer.h"
| #include "utils.h"
| #include "cuda.h"
| #include "blas.h"
| #include "gemm.h"
|
| #include <math.h>
| #include <stdio.h>
| #include <stdlib.h>
| #include <string.h>
|
| layer make_activation_layer(int batch, int inputs, ACTIVATION activation)
| {
| layer l = {0};
| l.type = ACTIVE;
|
| l.inputs = inputs;
| l.outputs = inputs;
| l.batch=batch;
|
| l.output = calloc(batch*inputs, sizeof(float*));
| l.delta = calloc(batch*inputs, sizeof(float*));
|
| #ifdef GPU
| l.output_gpu = cuda_make_array(l.output, inputs*batch);
| l.delta_gpu = cuda_make_array(l.delta, inputs*batch);
| #endif
| l.activation = activation;
| fprintf(stderr, "Activation Layer: %d inputs\n", inputs);
| return l;
| }
|
| void forward_activation_layer(layer l, network_state state)
| {
| copy_cpu(l.outputs*l.batch, state.input, 1, l.output, 1);
| activate_array(l.output, l.outputs*l.batch, l.activation);
| }
|
| void backward_activation_layer(layer l, network_state state)
| {
| gradient_array(l.output, l.outputs*l.batch, l.activation, l.delta);
| copy_cpu(l.outputs*l.batch, l.delta, 1, state.delta, 1);
| }
|
| #ifdef GPU
|
| void forward_activation_layer_gpu(layer l, network_state state)
| {
| copy_ongpu(l.outputs*l.batch, state.input, 1, l.output_gpu, 1);
| activate_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation);
| }
|
| void backward_activation_layer_gpu(layer l, network_state state)
| {
| gradient_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation, l.delta_gpu);
| copy_ongpu(l.outputs*l.batch, l.delta_gpu, 1, state.delta, 1);
| }
| #endif
|
|