#pragma once
|
#include <memory>
|
#include <vector>
|
#include <deque>
|
#include <algorithm>
|
|
#ifdef OPENCV
|
#include <opencv2/opencv.hpp> // C++
|
#include "opencv2/highgui/highgui_c.h" // C
|
#include "opencv2/imgproc/imgproc_c.h" // C
|
|
#include <opencv2/cudaoptflow.hpp>
|
#include <opencv2/cudaimgproc.hpp>
|
#include <opencv2/cudaarithm.hpp>
|
#include "opencv2/core/cuda.hpp"
|
#endif // OPENCV
|
|
#ifdef YOLODLL_EXPORTS
|
#if defined(_MSC_VER)
|
#define YOLODLL_API __declspec(dllexport)
|
#else
|
#define YOLODLL_API __attribute__((visibility("default")))
|
#endif
|
#else
|
#if defined(_MSC_VER)
|
#define YOLODLL_API __declspec(dllimport)
|
#else
|
#define YOLODLL_API
|
#endif
|
#endif
|
|
struct bbox_t {
|
unsigned int x, y, w, h; // (x,y) - top-left corner, (w, h) - width & height of bounded box
|
float prob; // confidence - probability that the object was found correctly
|
unsigned int obj_id; // class of object - from range [0, classes-1]
|
unsigned int track_id; // tracking id for video (0 - untracked, 1 - inf - tracked object)
|
};
|
|
struct image_t {
|
int h; // height
|
int w; // width
|
int c; // number of chanels (3 - for RGB)
|
float *data; // pointer to the image data
|
};
|
|
|
class Detector {
|
std::shared_ptr<void> detector_gpu_ptr;
|
std::deque<std::vector<bbox_t>> prev_bbox_vec_deque;
|
public:
|
float nms = .4;
|
|
YOLODLL_API Detector(std::string cfg_filename, std::string weight_filename, int gpu_id = 0);
|
YOLODLL_API ~Detector();
|
|
YOLODLL_API std::vector<bbox_t> detect(std::string image_filename, float thresh = 0.2, bool use_mean = false);
|
YOLODLL_API std::vector<bbox_t> detect(image_t img, float thresh = 0.2, bool use_mean = false);
|
static YOLODLL_API image_t load_image(std::string image_filename);
|
static YOLODLL_API void free_image(image_t m);
|
YOLODLL_API int get_net_width() const;
|
YOLODLL_API int get_net_height() const;
|
|
YOLODLL_API std::vector<bbox_t> tracking(std::vector<bbox_t> cur_bbox_vec, int const frames_story = 6);
|
|
#ifdef OPENCV
|
std::vector<bbox_t> detect(cv::Mat mat, float thresh = 0.2, bool use_mean = false)
|
{
|
if(mat.data == NULL)
|
throw std::runtime_error("Image is empty");
|
auto image_ptr = mat_to_image_resize(mat);
|
return detect_resized(*image_ptr, mat.size(), thresh, use_mean);
|
}
|
|
std::vector<bbox_t> detect_resized(image_t img, cv::Size init_size, float thresh = 0.2, bool use_mean = false)
|
{
|
if (img.data == NULL)
|
throw std::runtime_error("Image is empty");
|
auto detection_boxes = detect(img, thresh, use_mean);
|
float wk = (float)init_size.width / img.w, hk = (float)init_size.height / img.h;
|
for (auto &i : detection_boxes) i.x *= wk, i.w *= wk, i.y *= hk, i.h *= hk;
|
return detection_boxes;
|
}
|
|
std::shared_ptr<image_t> mat_to_image_resize(cv::Mat mat) const
|
{
|
if (mat.data == NULL) return std::shared_ptr<image_t>(NULL);
|
cv::Mat det_mat;
|
cv::resize(mat, det_mat, cv::Size(get_net_width(), get_net_height()));
|
return mat_to_image(det_mat);
|
}
|
|
static std::shared_ptr<image_t> mat_to_image(cv::Mat img)
|
{
|
std::shared_ptr<image_t> image_ptr(new image_t, [](image_t *img) { free_image(*img); delete img; });
|
std::shared_ptr<IplImage> ipl_small = std::make_shared<IplImage>(img);
|
*image_ptr = ipl_to_image(ipl_small.get());
|
rgbgr_image(*image_ptr);
|
return image_ptr;
|
}
|
|
private:
|
|
static image_t ipl_to_image(IplImage* src)
|
{
|
unsigned char *data = (unsigned char *)src->imageData;
|
int h = src->height;
|
int w = src->width;
|
int c = src->nChannels;
|
int step = src->widthStep;
|
image_t out = make_image_custom(w, h, c);
|
int i, j, k, count = 0;;
|
|
for (k = 0; k < c; ++k) {
|
for (i = 0; i < h; ++i) {
|
for (j = 0; j < w; ++j) {
|
out.data[count++] = data[i*step + j*c + k] / 255.;
|
}
|
}
|
}
|
return out;
|
}
|
|
static image_t make_empty_image(int w, int h, int c)
|
{
|
image_t out;
|
out.data = 0;
|
out.h = h;
|
out.w = w;
|
out.c = c;
|
return out;
|
}
|
|
static image_t make_image_custom(int w, int h, int c)
|
{
|
image_t out = make_empty_image(w, h, c);
|
out.data = (float *)calloc(h*w*c, sizeof(float));
|
return out;
|
}
|
|
static void rgbgr_image(image_t im)
|
{
|
int i;
|
for (i = 0; i < im.w*im.h; ++i) {
|
float swap = im.data[i];
|
im.data[i] = im.data[i + im.w*im.h * 2];
|
im.data[i + im.w*im.h * 2] = swap;
|
}
|
}
|
|
#endif // OPENCV
|
|
};
|
|
|
#if defined(TRACK_OPTFLOW) && defined(OPENCV)
|
|
class Tracker_optflow {
|
public:
|
|
|
// just to avoid extra allocations
|
cv::cuda::GpuMat src_mat_gpu;
|
cv::cuda::GpuMat dst_mat_gpu, dst_grey_gpu;
|
cv::cuda::GpuMat tmp_grey_gpu;
|
cv::cuda::GpuMat prev_pts_flow_gpu, cur_pts_flow_gpu;
|
cv::cuda::GpuMat status_gpu, err_gpu;
|
|
cv::cuda::GpuMat src_grey_gpu; // used in both functions
|
cv::Ptr<cv::cuda::SparsePyrLKOpticalFlow> sync_PyrLKOpticalFlow_gpu;
|
|
void update_tracking_flow(cv::Mat src_mat, int gpu_id = 0)
|
{
|
int const old_gpu_id = cv::cuda::getDevice();
|
static const int gpu_count = cv::cuda::getCudaEnabledDeviceCount();
|
if (gpu_count > gpu_id)
|
cv::cuda::setDevice(gpu_id);
|
|
cv::cuda::Stream stream;
|
|
if (sync_PyrLKOpticalFlow_gpu.empty()) {
|
sync_PyrLKOpticalFlow_gpu = cv::cuda::SparsePyrLKOpticalFlow::create();
|
|
//sync_PyrLKOpticalFlow_gpu->setWinSize(cv::Size(31, 31)); //sync_PyrLKOpticalFlow_gpu.winSize = cv::Size(31, 31);
|
//sync_PyrLKOpticalFlow_gpu->setWinSize(cv::Size(15, 15)); //sync_PyrLKOpticalFlow_gpu.winSize = cv::Size(15, 15);
|
sync_PyrLKOpticalFlow_gpu->setWinSize(cv::Size(21, 21));
|
sync_PyrLKOpticalFlow_gpu->setMaxLevel(3); //sync_PyrLKOpticalFlow_gpu.maxLevel = 8; // +-32 points // def: 3
|
sync_PyrLKOpticalFlow_gpu->setNumIters(6000); //sync_PyrLKOpticalFlow_gpu.iters = 8000; // def: 30
|
//??? //sync_PyrLKOpticalFlow_gpu.getMinEigenVals = true;
|
//std::cout << "sync_PyrLKOpticalFlow_gpu.maxLevel: " << sync_PyrLKOpticalFlow_gpu.maxLevel << std::endl;
|
//std::cout << "sync_PyrLKOpticalFlow_gpu.iters: " << sync_PyrLKOpticalFlow_gpu.iters << std::endl;
|
//std::cout << "sync_PyrLKOpticalFlow_gpu.winSize: " << sync_PyrLKOpticalFlow_gpu.winSize << std::endl;
|
}
|
|
if (src_mat.channels() == 3) {
|
if (src_mat_gpu.cols == 0) {
|
src_mat_gpu = cv::cuda::GpuMat(src_mat.size(), src_mat.type());
|
src_grey_gpu = cv::cuda::GpuMat(src_mat.size(), CV_8UC1);
|
}
|
|
src_mat_gpu.upload(src_mat, stream);
|
cv::cuda::cvtColor(src_mat_gpu, src_grey_gpu, CV_BGR2GRAY, 0, stream);
|
//std::cout << " \n\n OK !!! \n\n";
|
}
|
cv::cuda::setDevice(old_gpu_id);
|
}
|
|
|
std::vector<bbox_t> tracking_flow(cv::Mat dst_mat, std::vector<bbox_t> cur_bbox_vec, int gpu_id = 0)
|
{
|
if (sync_PyrLKOpticalFlow_gpu.empty()) {
|
std::cout << "sync_PyrLKOpticalFlow_gpu isn't initialized \n";
|
return cur_bbox_vec;
|
}
|
|
int const old_gpu_id = cv::cuda::getDevice();
|
static const int gpu_count = cv::cuda::getCudaEnabledDeviceCount();
|
if (gpu_count > gpu_id)
|
cv::cuda::setDevice(gpu_id);
|
|
cv::cuda::Stream stream;
|
|
if (dst_mat_gpu.cols == 0) {
|
dst_mat_gpu = cv::cuda::GpuMat(dst_mat.size(), dst_mat.type());
|
dst_grey_gpu = cv::cuda::GpuMat(dst_mat.size(), CV_8UC1);
|
tmp_grey_gpu = cv::cuda::GpuMat(dst_mat.size(), CV_8UC1);
|
}
|
|
|
dst_mat_gpu.upload(dst_mat, stream);
|
|
cv::cuda::cvtColor(dst_mat_gpu, dst_grey_gpu, CV_BGR2GRAY, 0, stream);
|
|
if (src_grey_gpu.rows != dst_grey_gpu.rows || src_grey_gpu.cols != dst_grey_gpu.cols) {
|
stream.waitForCompletion();
|
src_grey_gpu = dst_grey_gpu.clone();
|
cv::cuda::setDevice(old_gpu_id);
|
return cur_bbox_vec;
|
}
|
|
cv::Mat prev_pts, prev_pts_flow_cpu, cur_pts_flow_cpu;
|
|
for (auto &i : cur_bbox_vec) {
|
float x_center = (i.x + i.w / 2);
|
float y_center = (i.y + i.h / 2);
|
prev_pts.push_back(cv::Point2f(x_center, y_center));
|
}
|
|
|
if (prev_pts.rows == 0)
|
prev_pts_flow_cpu = cv::Mat();
|
else
|
cv::transpose(prev_pts, prev_pts_flow_cpu);
|
|
|
if (prev_pts_flow_gpu.cols < prev_pts_flow_cpu.cols) {
|
prev_pts_flow_gpu = cv::cuda::GpuMat(prev_pts_flow_cpu.size(), prev_pts_flow_cpu.type());
|
cur_pts_flow_gpu = cv::cuda::GpuMat(prev_pts_flow_cpu.size(), prev_pts_flow_cpu.type());
|
|
status_gpu = cv::cuda::GpuMat(prev_pts_flow_cpu.size(), CV_8UC1);
|
err_gpu = cv::cuda::GpuMat(prev_pts_flow_cpu.size(), CV_32FC1);
|
}
|
|
prev_pts_flow_gpu.upload(cv::Mat(prev_pts_flow_cpu), stream);
|
|
|
dst_grey_gpu.copyTo(tmp_grey_gpu, stream);
|
|
//sync_PyrLKOpticalFlow_gpu.sparse(src_grey_gpu, dst_grey_gpu, prev_pts_flow_gpu, cur_pts_flow_gpu, status_gpu, &err_gpu); // OpenCV 2.4.x
|
sync_PyrLKOpticalFlow_gpu->calc(src_grey_gpu, dst_grey_gpu, prev_pts_flow_gpu, cur_pts_flow_gpu, status_gpu, err_gpu, stream); // OpenCV 3.x
|
//std::cout << "\n 1-e \n";
|
|
cur_pts_flow_gpu.download(cur_pts_flow_cpu, stream);
|
|
tmp_grey_gpu.copyTo(src_grey_gpu, stream);
|
|
cv::Mat err_cpu, status_cpu;
|
err_gpu.download(err_cpu, stream);
|
status_gpu.download(status_cpu, stream);
|
|
stream.waitForCompletion();
|
|
std::vector<bbox_t> result_bbox_vec;
|
|
for (size_t i = 0; i < cur_bbox_vec.size(); ++i)
|
{
|
cv::Point2f cur_key_pt = cur_pts_flow_cpu.at<cv::Point2f>(0, i);
|
cv::Point2f prev_key_pt = prev_pts_flow_cpu.at<cv::Point2f>(0, i);
|
|
float moved_x = cur_key_pt.x - prev_key_pt.x;
|
float moved_y = cur_key_pt.y - prev_key_pt.y;
|
|
if (err_cpu.cols > i && status_cpu.cols > i)
|
if (abs(moved_x) < 100 && abs(moved_y) < 100)
|
//if (err_cpu.at<float>(0, i) < 60 && status_cpu.at<unsigned char>(0, i) != 0)
|
{
|
cur_bbox_vec[i].x += moved_x + 0.5;
|
cur_bbox_vec[i].y += moved_y + 0.5;
|
result_bbox_vec.push_back(cur_bbox_vec[i]);
|
}
|
}
|
|
cv::cuda::setDevice(old_gpu_id);
|
|
return result_bbox_vec;
|
}
|
|
};
|
#else
|
|
class Tracker_optflow {};
|
|
#endif // defined(TRACK_OPTFLOW) && defined(OPENCV)
|