#include "region_layer.h"
|
#include "activations.h"
|
#include "softmax_layer.h"
|
#include "blas.h"
|
#include "box.h"
|
#include "cuda.h"
|
#include "utils.h"
|
#include <stdio.h>
|
#include <string.h>
|
#include <stdlib.h>
|
|
int get_region_layer_locations(region_layer l)
|
{
|
return l.inputs / (l.classes+l.coords);
|
}
|
|
region_layer make_region_layer(int batch, int inputs, int n, int classes, int coords, int rescore)
|
{
|
region_layer l = {0};
|
l.type = REGION;
|
|
l.n = n;
|
l.batch = batch;
|
l.inputs = inputs;
|
l.classes = classes;
|
l.coords = coords;
|
l.rescore = rescore;
|
l.cost = calloc(1, sizeof(float));
|
int outputs = inputs;
|
l.outputs = outputs;
|
l.output = calloc(batch*outputs, sizeof(float));
|
l.delta = calloc(batch*outputs, sizeof(float));
|
#ifdef GPU
|
l.output_gpu = cuda_make_array(0, batch*outputs);
|
l.delta_gpu = cuda_make_array(0, batch*outputs);
|
#endif
|
|
fprintf(stderr, "Region Layer\n");
|
srand(0);
|
|
return l;
|
}
|
|
void forward_region_layer(const region_layer l, network_state state)
|
{
|
int locations = get_region_layer_locations(l);
|
int i,j;
|
for(i = 0; i < l.batch*locations; ++i){
|
int index = i*(l.classes + l.coords);
|
int mask = (!state.truth || !state.truth[index]);
|
|
for(j = 0; j < l.classes; ++j){
|
l.output[index+j] = state.input[index+j];
|
}
|
|
softmax_array(l.output + index, l.classes, l.output + index);
|
index += l.classes;
|
|
for(j = 0; j < l.coords; ++j){
|
l.output[index+j] = mask*state.input[index+j];
|
}
|
}
|
if(state.train){
|
float avg_iou = 0;
|
int count = 0;
|
*(l.cost) = 0;
|
int size = l.outputs * l.batch;
|
memset(l.delta, 0, size * sizeof(float));
|
for (i = 0; i < l.batch*locations; ++i) {
|
int offset = i*(l.classes+l.coords);
|
int bg = state.truth[offset];
|
for (j = offset; j < offset+l.classes; ++j) {
|
//*(l.cost) += pow(state.truth[j] - l.output[j], 2);
|
//l.delta[j] = state.truth[j] - l.output[j];
|
}
|
|
box anchor = {0,0,.5,.5};
|
box truth_code = {state.truth[j+0], state.truth[j+1], state.truth[j+2], state.truth[j+3]};
|
box out_code = {l.output[j+0], l.output[j+1], l.output[j+2], l.output[j+3]};
|
box out = decode_box(out_code, anchor);
|
box truth = decode_box(truth_code, anchor);
|
|
if(bg) continue;
|
//printf("Box: %f %f %f %f\n", truth.x, truth.y, truth.w, truth.h);
|
//printf("Code: %f %f %f %f\n", truth_code.x, truth_code.y, truth_code.w, truth_code.h);
|
//printf("Pred : %f %f %f %f\n", out.x, out.y, out.w, out.h);
|
// printf("Pred Code: %f %f %f %f\n", out_code.x, out_code.y, out_code.w, out_code.h);
|
float iou = box_iou(out, truth);
|
avg_iou += iou;
|
++count;
|
|
/*
|
*(l.cost) += pow((1-iou), 2);
|
l.delta[j+0] = (state.truth[j+0] - l.output[j+0]);
|
l.delta[j+1] = (state.truth[j+1] - l.output[j+1]);
|
l.delta[j+2] = (state.truth[j+2] - l.output[j+2]);
|
l.delta[j+3] = (state.truth[j+3] - l.output[j+3]);
|
*/
|
|
for (j = offset+l.classes; j < offset+l.classes+l.coords; ++j) {
|
//*(l.cost) += pow(state.truth[j] - l.output[j], 2);
|
//l.delta[j] = state.truth[j] - l.output[j];
|
float diff = state.truth[j] - l.output[j];
|
if (fabs(diff) < 1){
|
l.delta[j] = diff;
|
*(l.cost) += .5*pow(state.truth[j] - l.output[j], 2);
|
} else {
|
l.delta[j] = (diff > 0) ? 1 : -1;
|
*(l.cost) += fabs(diff) - .5;
|
}
|
//l.delta[j] = state.truth[j] - l.output[j];
|
}
|
|
/*
|
if(l.rescore){
|
for (j = offset; j < offset+l.classes; ++j) {
|
if(state.truth[j]) state.truth[j] = iou;
|
l.delta[j] = state.truth[j] - l.output[j];
|
}
|
}
|
*/
|
}
|
printf("Avg IOU: %f\n", avg_iou/count);
|
}
|
}
|
|
void backward_region_layer(const region_layer l, network_state state)
|
{
|
axpy_cpu(l.batch*l.inputs, 1, l.delta_gpu, 1, state.delta, 1);
|
//copy_cpu(l.batch*l.inputs, l.delta_gpu, 1, state.delta, 1);
|
}
|
|
#ifdef GPU
|
|
void forward_region_layer_gpu(const region_layer l, network_state state)
|
{
|
float *in_cpu = calloc(l.batch*l.inputs, sizeof(float));
|
float *truth_cpu = 0;
|
if(state.truth){
|
truth_cpu = calloc(l.batch*l.outputs, sizeof(float));
|
cuda_pull_array(state.truth, truth_cpu, l.batch*l.outputs);
|
}
|
cuda_pull_array(state.input, in_cpu, l.batch*l.inputs);
|
network_state cpu_state;
|
cpu_state.train = state.train;
|
cpu_state.truth = truth_cpu;
|
cpu_state.input = in_cpu;
|
forward_region_layer(l, cpu_state);
|
cuda_push_array(l.output_gpu, l.output, l.batch*l.outputs);
|
cuda_push_array(l.delta_gpu, l.delta, l.batch*l.outputs);
|
free(cpu_state.input);
|
if(cpu_state.truth) free(cpu_state.truth);
|
}
|
|
void backward_region_layer_gpu(region_layer l, network_state state)
|
{
|
axpy_ongpu(l.batch*l.inputs, 1, l.delta_gpu, 1, state.delta, 1);
|
//copy_ongpu(l.batch*l.inputs, l.delta_gpu, 1, state.delta, 1);
|
}
|
#endif
|