Joseph Redmon
2015-08-25 9d42f49a240136a8cd643cdc1f98230d4f22b05e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
#include "region_layer.h"
#include "activations.h"
#include "softmax_layer.h"
#include "blas.h"
#include "box.h"
#include "cuda.h"
#include "utils.h"
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
 
int get_region_layer_locations(region_layer l)
{
    return l.inputs / (l.classes+l.coords);
}
 
region_layer make_region_layer(int batch, int inputs, int n, int classes, int coords, int rescore)
{
    region_layer l = {0};
    l.type = REGION;
    
    l.n = n;
    l.batch = batch;
    l.inputs = inputs;
    l.classes = classes;
    l.coords = coords;
    l.rescore = rescore;
    l.cost = calloc(1, sizeof(float));
    int outputs = inputs;
    l.outputs = outputs;
    l.output = calloc(batch*outputs, sizeof(float));
    l.delta = calloc(batch*outputs, sizeof(float));
    #ifdef GPU
    l.output_gpu = cuda_make_array(0, batch*outputs);
    l.delta_gpu = cuda_make_array(0, batch*outputs);
    #endif
 
    fprintf(stderr, "Region Layer\n");
    srand(0);
 
    return l;
}
 
void forward_region_layer(const region_layer l, network_state state)
{
    int locations = get_region_layer_locations(l);
    int i,j;
    for(i = 0; i < l.batch*locations; ++i){
        int index = i*(l.classes + l.coords);
        int mask = (!state.truth || !state.truth[index]);
 
        for(j = 0; j < l.classes; ++j){
            l.output[index+j] = state.input[index+j];
        }
 
        softmax_array(l.output + index, l.classes, l.output + index);
        index += l.classes;
 
        for(j = 0; j < l.coords; ++j){
            l.output[index+j] = mask*state.input[index+j];
        }
    }
    if(state.train){
        float avg_iou = 0;
        int count = 0;
        *(l.cost) = 0;
        int size = l.outputs * l.batch;
        memset(l.delta, 0, size * sizeof(float));
        for (i = 0; i < l.batch*locations; ++i) {
            int offset = i*(l.classes+l.coords);
            int bg = state.truth[offset];
            for (j = offset; j < offset+l.classes; ++j) {
                //*(l.cost) += pow(state.truth[j] - l.output[j], 2);
                //l.delta[j] =  state.truth[j] - l.output[j];
            }
 
            box anchor = {0,0,.5,.5};
            box truth_code = {state.truth[j+0], state.truth[j+1], state.truth[j+2], state.truth[j+3]};
            box out_code =   {l.output[j+0], l.output[j+1], l.output[j+2], l.output[j+3]};
            box out = decode_box(out_code, anchor);
            box truth = decode_box(truth_code, anchor);
 
            if(bg) continue;
            //printf("Box:       %f %f %f %f\n", truth.x, truth.y, truth.w, truth.h);
            //printf("Code:      %f %f %f %f\n", truth_code.x, truth_code.y, truth_code.w, truth_code.h);
            //printf("Pred     : %f %f %f %f\n", out.x, out.y, out.w, out.h);
            // printf("Pred Code: %f %f %f %f\n", out_code.x, out_code.y, out_code.w, out_code.h);
            float iou = box_iou(out, truth);
            avg_iou += iou;
            ++count;
 
            /*
             *(l.cost) += pow((1-iou), 2);
             l.delta[j+0] = (state.truth[j+0] - l.output[j+0]);
             l.delta[j+1] = (state.truth[j+1] - l.output[j+1]);
             l.delta[j+2] = (state.truth[j+2] - l.output[j+2]);
             l.delta[j+3] = (state.truth[j+3] - l.output[j+3]);
             */
 
            for (j = offset+l.classes; j < offset+l.classes+l.coords; ++j) {
                //*(l.cost) += pow(state.truth[j] - l.output[j], 2);
                //l.delta[j] =  state.truth[j] - l.output[j];
                float diff = state.truth[j] - l.output[j];
                if (fabs(diff) < 1){
                    l.delta[j] = diff;
                    *(l.cost) += .5*pow(state.truth[j] - l.output[j], 2);
                } else {
                    l.delta[j] = (diff > 0) ? 1 : -1;
                    *(l.cost) += fabs(diff) - .5;
                }
                //l.delta[j] = state.truth[j] - l.output[j];
            }
 
            /*
               if(l.rescore){
               for (j = offset; j < offset+l.classes; ++j) {
               if(state.truth[j]) state.truth[j] = iou;
               l.delta[j] =  state.truth[j] - l.output[j];
               }
               }
             */
        }
        printf("Avg IOU: %f\n", avg_iou/count);
    }
}
 
void backward_region_layer(const region_layer l, network_state state)
{
    axpy_cpu(l.batch*l.inputs, 1, l.delta_gpu, 1, state.delta, 1);
    //copy_cpu(l.batch*l.inputs, l.delta_gpu, 1, state.delta, 1);
}
 
#ifdef GPU
 
void forward_region_layer_gpu(const region_layer l, network_state state)
{
    float *in_cpu = calloc(l.batch*l.inputs, sizeof(float));
    float *truth_cpu = 0;
    if(state.truth){
        truth_cpu = calloc(l.batch*l.outputs, sizeof(float));
        cuda_pull_array(state.truth, truth_cpu, l.batch*l.outputs);
    }
    cuda_pull_array(state.input, in_cpu, l.batch*l.inputs);
    network_state cpu_state;
    cpu_state.train = state.train;
    cpu_state.truth = truth_cpu;
    cpu_state.input = in_cpu;
    forward_region_layer(l, cpu_state);
    cuda_push_array(l.output_gpu, l.output, l.batch*l.outputs);
    cuda_push_array(l.delta_gpu, l.delta, l.batch*l.outputs);
    free(cpu_state.input);
    if(cpu_state.truth) free(cpu_state.truth);
}
 
void backward_region_layer_gpu(region_layer l, network_state state)
{
    axpy_ongpu(l.batch*l.inputs, 1, l.delta_gpu, 1, state.delta, 1);
    //copy_ongpu(l.batch*l.inputs, l.delta_gpu, 1, state.delta, 1);
}
#endif