#include "connected_layer.h"
|
//#include "old_conv.h"
|
#include "convolutional_layer.h"
|
#include "maxpool_layer.h"
|
#include "network.h"
|
#include "image.h"
|
#include "parser.h"
|
#include "data.h"
|
#include "matrix.h"
|
#include "utils.h"
|
#include "mini_blas.h"
|
|
#include <time.h>
|
#include <stdlib.h>
|
#include <stdio.h>
|
|
void test_convolve()
|
{
|
image dog = load_image("dog.jpg");
|
printf("dog channels %d\n", dog.c);
|
image kernel = make_random_image(3,3,dog.c);
|
image edge = make_image(dog.h, dog.w, 1);
|
int i;
|
clock_t start = clock(), end;
|
for(i = 0; i < 1000; ++i){
|
convolve(dog, kernel, 1, 0, edge, 1);
|
}
|
end = clock();
|
printf("Convolutions: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC);
|
show_image_layers(edge, "Test Convolve");
|
}
|
|
void test_convolve_matrix()
|
{
|
image dog = load_image("dog.jpg");
|
printf("dog channels %d\n", dog.c);
|
|
int size = 11;
|
int stride = 4;
|
int n = 40;
|
double *filters = make_random_image(size, size, dog.c*n).data;
|
|
int mw = ((dog.h-size)/stride+1)*((dog.w-size)/stride+1);
|
int mh = (size*size*dog.c);
|
double *matrix = calloc(mh*mw, sizeof(double));
|
|
image edge = make_image((dog.h-size)/stride+1, (dog.w-size)/stride+1, n);
|
|
|
int i;
|
clock_t start = clock(), end;
|
for(i = 0; i < 1000; ++i){
|
im2col_cpu(dog.data, dog.c, dog.h, dog.w, size, stride, matrix);
|
gemm(0,0,n,mw,mh,1,filters,mh,matrix,mw,1,edge.data,mw);
|
}
|
end = clock();
|
printf("Convolutions: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC);
|
show_image_layers(edge, "Test Convolve");
|
cvWaitKey(0);
|
}
|
|
void test_color()
|
{
|
image dog = load_image("test_color.png");
|
show_image_layers(dog, "Test Color");
|
}
|
|
void verify_convolutional_layer()
|
{
|
srand(0);
|
int i;
|
int n = 1;
|
int stride = 1;
|
int size = 3;
|
double eps = .00000001;
|
image test = make_random_image(5,5, 1);
|
convolutional_layer layer = *make_convolutional_layer(test.h,test.w,test.c, n, size, stride, RELU);
|
image out = get_convolutional_image(layer);
|
double **jacobian = calloc(test.h*test.w*test.c, sizeof(double));
|
|
forward_convolutional_layer(layer, test.data);
|
image base = copy_image(out);
|
|
for(i = 0; i < test.h*test.w*test.c; ++i){
|
test.data[i] += eps;
|
forward_convolutional_layer(layer, test.data);
|
image partial = copy_image(out);
|
subtract_image(partial, base);
|
scale_image(partial, 1/eps);
|
jacobian[i] = partial.data;
|
test.data[i] -= eps;
|
}
|
double **jacobian2 = calloc(out.h*out.w*out.c, sizeof(double));
|
image in_delta = make_image(test.h, test.w, test.c);
|
image out_delta = get_convolutional_delta(layer);
|
for(i = 0; i < out.h*out.w*out.c; ++i){
|
out_delta.data[i] = 1;
|
//backward_convolutional_layer(layer, test.data, in_delta.data);
|
image partial = copy_image(in_delta);
|
jacobian2[i] = partial.data;
|
out_delta.data[i] = 0;
|
}
|
int j;
|
double *j1 = calloc(test.h*test.w*test.c*out.h*out.w*out.c, sizeof(double));
|
double *j2 = calloc(test.h*test.w*test.c*out.h*out.w*out.c, sizeof(double));
|
for(i = 0; i < test.h*test.w*test.c; ++i){
|
for(j =0 ; j < out.h*out.w*out.c; ++j){
|
j1[i*out.h*out.w*out.c + j] = jacobian[i][j];
|
j2[i*out.h*out.w*out.c + j] = jacobian2[j][i];
|
printf("%f %f\n", jacobian[i][j], jacobian2[j][i]);
|
}
|
}
|
|
|
image mj1 = double_to_image(test.w*test.h*test.c, out.w*out.h*out.c, 1, j1);
|
image mj2 = double_to_image(test.w*test.h*test.c, out.w*out.h*out.c, 1, j2);
|
printf("%f %f\n", avg_image_layer(mj1,0), avg_image_layer(mj2,0));
|
show_image(mj1, "forward jacobian");
|
show_image(mj2, "backward jacobian");
|
|
}
|
|
void test_load()
|
{
|
image dog = load_image("dog.jpg");
|
show_image(dog, "Test Load");
|
show_image_layers(dog, "Test Load");
|
}
|
void test_upsample()
|
{
|
image dog = load_image("dog.jpg");
|
int n = 3;
|
image up = make_image(n*dog.h, n*dog.w, dog.c);
|
upsample_image(dog, n, up);
|
show_image(up, "Test Upsample");
|
show_image_layers(up, "Test Upsample");
|
}
|
|
void test_rotate()
|
{
|
int i;
|
image dog = load_image("dog.jpg");
|
clock_t start = clock(), end;
|
for(i = 0; i < 1001; ++i){
|
rotate_image(dog);
|
}
|
end = clock();
|
printf("Rotations: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC);
|
show_image(dog, "Test Rotate");
|
|
image random = make_random_image(3,3,3);
|
show_image(random, "Test Rotate Random");
|
rotate_image(random);
|
show_image(random, "Test Rotate Random");
|
rotate_image(random);
|
show_image(random, "Test Rotate Random");
|
}
|
|
void test_parser()
|
{
|
network net = parse_network_cfg("test_parser.cfg");
|
double input[1];
|
int count = 0;
|
|
double avgerr = 0;
|
while(++count < 100000000){
|
double v = ((double)rand()/RAND_MAX);
|
double truth = v*v;
|
input[0] = v;
|
forward_network(net, input);
|
double *out = get_network_output(net);
|
double *delta = get_network_delta(net);
|
double err = pow((out[0]-truth),2.);
|
avgerr = .99 * avgerr + .01 * err;
|
if(count % 1000000 == 0) printf("%f %f :%f AVG %f \n", truth, out[0], err, avgerr);
|
delta[0] = truth - out[0];
|
backward_network(net, input, &truth);
|
update_network(net, .001,0,0);
|
}
|
}
|
|
void test_data()
|
{
|
char *labels[] = {"cat","dog"};
|
data train = load_data_image_pathfile_random("train_paths.txt", 101,labels, 2);
|
free_data(train);
|
}
|
|
void test_full()
|
{
|
network net = parse_network_cfg("full.cfg");
|
srand(0);
|
int i = 0;
|
char *labels[] = {"cat","dog"};
|
double lr = .00001;
|
double momentum = .9;
|
double decay = 0.01;
|
while(i++ < 1000 || 1){
|
data train = load_data_image_pathfile_random("train_paths.txt", 1000, labels, 2);
|
train_network(net, train, lr, momentum, decay);
|
free_data(train);
|
printf("Round %d\n", i);
|
}
|
}
|
|
void test_nist()
|
{
|
srand(444444);
|
srand(888888);
|
network net = parse_network_cfg("nist_basic.cfg");
|
data train = load_categorical_data_csv("mnist/mnist_train.csv", 0, 10);
|
data test = load_categorical_data_csv("mnist/mnist_test.csv",0,10);
|
normalize_data_rows(train);
|
normalize_data_rows(test);
|
//randomize_data(train);
|
int count = 0;
|
double lr = .0005;
|
double momentum = .9;
|
double decay = 0.01;
|
clock_t start = clock(), end;
|
while(++count <= 100){
|
visualize_network(net);
|
double loss = train_network_sgd(net, train, 10000, lr, momentum, decay);
|
printf("%5d Training Loss: %lf, Params: %f %f %f, ",count*100, loss, lr, momentum, decay);
|
end = clock();
|
printf("Time: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC);
|
start=end;
|
cvWaitKey(100);
|
//lr /= 2;
|
if(count%5 == 0){
|
double train_acc = network_accuracy(net, train);
|
fprintf(stderr, "\nTRAIN: %f\n", train_acc);
|
double test_acc = network_accuracy(net, test);
|
fprintf(stderr, "TEST: %f\n\n", test_acc);
|
printf("%d, %f, %f\n", count, train_acc, test_acc);
|
}
|
}
|
}
|
|
void test_ensemble()
|
{
|
int i;
|
srand(888888);
|
data d = load_categorical_data_csv("mnist/mnist_train.csv", 0, 10);
|
normalize_data_rows(d);
|
data test = load_categorical_data_csv("mnist/mnist_test.csv", 0,10);
|
normalize_data_rows(test);
|
data train = d;
|
// data *split = split_data(d, 1, 10);
|
// data train = split[0];
|
// data test = split[1];
|
matrix prediction = make_matrix(test.y.rows, test.y.cols);
|
int n = 30;
|
for(i = 0; i < n; ++i){
|
int count = 0;
|
double lr = .0005;
|
double momentum = .9;
|
double decay = .01;
|
network net = parse_network_cfg("nist.cfg");
|
while(++count <= 15){
|
double acc = train_network_sgd(net, train, train.X.rows, lr, momentum, decay);
|
printf("Training Accuracy: %lf Learning Rate: %f Momentum: %f Decay: %f\n", acc, lr, momentum, decay );
|
lr /= 2;
|
}
|
matrix partial = network_predict_data(net, test);
|
double acc = matrix_accuracy(test.y, partial);
|
printf("Model Accuracy: %lf\n", acc);
|
matrix_add_matrix(partial, prediction);
|
acc = matrix_accuracy(test.y, prediction);
|
printf("Current Ensemble Accuracy: %lf\n", acc);
|
free_matrix(partial);
|
}
|
double acc = matrix_accuracy(test.y, prediction);
|
printf("Full Ensemble Accuracy: %lf\n", acc);
|
}
|
|
void test_random_classify()
|
{
|
network net = parse_network_cfg("connected.cfg");
|
matrix m = csv_to_matrix("train.csv");
|
//matrix ho = hold_out_matrix(&m, 2500);
|
double *truth = pop_column(&m, 0);
|
//double *ho_truth = pop_column(&ho, 0);
|
int i;
|
clock_t start = clock(), end;
|
int count = 0;
|
while(++count <= 300){
|
for(i = 0; i < m.rows; ++i){
|
int index = rand()%m.rows;
|
//image p = double_to_image(1690,1,1,m.vals[index]);
|
//normalize_image(p);
|
forward_network(net, m.vals[index]);
|
double *out = get_network_output(net);
|
double *delta = get_network_delta(net);
|
//printf("%f\n", out[0]);
|
delta[0] = truth[index] - out[0];
|
// printf("%f\n", delta[0]);
|
//printf("%f %f\n", truth[index], out[0]);
|
//backward_network(net, m.vals[index], );
|
update_network(net, .00001, 0,0);
|
}
|
//double test_acc = error_network(net, m, truth);
|
//double valid_acc = error_network(net, ho, ho_truth);
|
//printf("%f, %f\n", test_acc, valid_acc);
|
//fprintf(stderr, "%5d: %f Valid: %f\n",count, test_acc, valid_acc);
|
//if(valid_acc > .70) break;
|
}
|
end = clock();
|
FILE *fp = fopen("submission/out.txt", "w");
|
matrix test = csv_to_matrix("test.csv");
|
truth = pop_column(&test, 0);
|
for(i = 0; i < test.rows; ++i){
|
forward_network(net, test.vals[i]);
|
double *out = get_network_output(net);
|
if(fabs(out[0]) < .5) fprintf(fp, "0\n");
|
else fprintf(fp, "1\n");
|
}
|
fclose(fp);
|
printf("Neural Net Learning: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC);
|
}
|
|
void test_split()
|
{
|
data train = load_categorical_data_csv("mnist/mnist_train.csv", 0, 10);
|
data *split = split_data(train, 0, 13);
|
printf("%d, %d, %d\n", train.X.rows, split[0].X.rows, split[1].X.rows);
|
}
|
|
double *random_matrix(int rows, int cols)
|
{
|
int i, j;
|
double *m = calloc(rows*cols, sizeof(double));
|
for(i = 0; i < rows; ++i){
|
for(j = 0; j < cols; ++j){
|
m[i*cols+j] = (double)rand()/RAND_MAX;
|
}
|
}
|
return m;
|
}
|
|
void test_blas()
|
{
|
int m = 1000, n = 1000, k = 1000;
|
double *a = random_matrix(m,k);
|
double *b = random_matrix(k,n);
|
double *c = random_matrix(m,n);
|
int i;
|
for(i = 0; i<1000; ++i){
|
gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
|
}
|
}
|
|
void test_im2row()
|
{
|
int h = 20;
|
int w = 20;
|
int c = 3;
|
int stride = 1;
|
int size = 11;
|
image test = make_random_image(h,w,c);
|
int mc = 1;
|
int mw = ((h-size)/stride+1)*((w-size)/stride+1);
|
int mh = (size*size*c);
|
int msize = mc*mw*mh;
|
double *matrix = calloc(msize, sizeof(double));
|
int i;
|
for(i = 0; i < 1000; ++i){
|
im2col_cpu(test.data, c, h, w, size, stride, matrix);
|
image render = double_to_image(mh, mw, mc, matrix);
|
}
|
}
|
|
int main()
|
{
|
//test_blas();
|
//test_convolve_matrix();
|
// test_im2row();
|
//test_split();
|
//test_ensemble();
|
test_nist();
|
//test_full();
|
//test_random_preprocess();
|
//test_random_classify();
|
//test_parser();
|
//test_backpropagate();
|
//test_ann();
|
//test_convolve();
|
//test_upsample();
|
//test_rotate();
|
//test_load();
|
//test_network();
|
//test_convolutional_layer();
|
//verify_convolutional_layer();
|
//test_color();
|
//cvWaitKey(0);
|
return 0;
|
}
|