Joseph Redmon
2014-04-17 b4b729a15e577c68f64e0ac69fb299de6f5f706c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
#include "convolutional_layer.h"
#include "utils.h"
#include "mini_blas.h"
#include <stdio.h>
 
int convolutional_out_height(convolutional_layer layer)
{
    return (layer.h-layer.size)/layer.stride + 1;
}
 
int convolutional_out_width(convolutional_layer layer)
{
    return (layer.w-layer.size)/layer.stride + 1;
}
 
image get_convolutional_image(convolutional_layer layer)
{
    int h,w,c;
    h = convolutional_out_height(layer);
    w = convolutional_out_width(layer);
    c = layer.n;
    return float_to_image(h,w,c,layer.output);
}
 
image get_convolutional_delta(convolutional_layer layer)
{
    int h,w,c;
    h = convolutional_out_height(layer);
    w = convolutional_out_width(layer);
    c = layer.n;
    return float_to_image(h,w,c,layer.delta);
}
 
convolutional_layer *make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, ACTIVATION activation)
{
    int i;
    size = 2*(size/2)+1; //HA! And you thought you'd use an even sized filter...
    convolutional_layer *layer = calloc(1, sizeof(convolutional_layer));
    layer->h = h;
    layer->w = w;
    layer->c = c;
    layer->n = n;
    layer->batch = batch;
    layer->stride = stride;
    layer->size = size;
 
    layer->filters = calloc(c*n*size*size, sizeof(float));
    layer->filter_updates = calloc(c*n*size*size, sizeof(float));
    layer->filter_momentum = calloc(c*n*size*size, sizeof(float));
 
    layer->biases = calloc(n, sizeof(float));
    layer->bias_updates = calloc(n, sizeof(float));
    layer->bias_momentum = calloc(n, sizeof(float));
    float scale = 1./(size*size*c);
    for(i = 0; i < c*n*size*size; ++i) layer->filters[i] = scale*(rand_uniform());
    for(i = 0; i < n; ++i){
        //layer->biases[i] = rand_normal()*scale + scale;
        layer->biases[i] = 0;
    }
    int out_h = convolutional_out_height(*layer);
    int out_w = convolutional_out_width(*layer);
 
    layer->col_image = calloc(layer->batch*out_h*out_w*size*size*c, sizeof(float));
    layer->output = calloc(layer->batch*out_h * out_w * n, sizeof(float));
    layer->delta  = calloc(layer->batch*out_h * out_w * n, sizeof(float));
    layer->activation = activation;
 
    fprintf(stderr, "Convolutional Layer: %d x %d x %d image, %d filters -> %d x %d x %d image\n", h,w,c,n, out_h, out_w, n);
    srand(0);
 
    return layer;
}
 
void resize_convolutional_layer(convolutional_layer *layer, int h, int w, int c)
{
    layer->h = h;
    layer->w = w;
    layer->c = c;
    int out_h = convolutional_out_height(*layer);
    int out_w = convolutional_out_width(*layer);
 
    layer->col_image = realloc(layer->col_image,
                                layer->batch*out_h*out_w*layer->size*layer->size*layer->c*sizeof(float));
    layer->output = realloc(layer->output,
                                layer->batch*out_h * out_w * layer->n*sizeof(float));
    layer->delta  = realloc(layer->delta,
                                layer->batch*out_h * out_w * layer->n*sizeof(float));
}
 
void forward_convolutional_layer(const convolutional_layer layer, float *in)
{
    int i;
    int m = layer.n;
    int k = layer.size*layer.size*layer.c;
    int n = convolutional_out_height(layer)*
            convolutional_out_width(layer)*
            layer.batch;
 
    memset(layer.output, 0, m*n*sizeof(float));
 
    float *a = layer.filters;
    float *b = layer.col_image;
    float *c = layer.output;
    for(i = 0; i < layer.batch; ++i){
        im2col_cpu(in+i*(n/layer.batch),  layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, b+i*(n/layer.batch));
    }
    gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
 
    for(i = 0; i < m*n; ++i){
        layer.output[i] = activate(layer.output[i], layer.activation);
    }
    //for(i = 0; i < m*n; ++i) if(i%(m*n/10+1)==0) printf("%f, ", layer.output[i]); printf("\n");
 
}
 
void gradient_delta_convolutional_layer(convolutional_layer layer)
{
    int i;
    int size = convolutional_out_height(layer)*
                convolutional_out_width(layer)*
                layer.n*
                layer.batch;
    for(i = 0; i < size; ++i){
        layer.delta[i] *= gradient(layer.output[i], layer.activation);
    }
}
 
void learn_bias_convolutional_layer(convolutional_layer layer)
{
    int i,j,b;
    int size = convolutional_out_height(layer)
                *convolutional_out_width(layer);
    for(b = 0; b < layer.batch; ++b){
        for(i = 0; i < layer.n; ++i){
            float sum = 0;
            for(j = 0; j < size; ++j){
                sum += layer.delta[j+size*(i+b*layer.n)];
            }
            layer.bias_updates[i] += sum/size;
        }
    }
}
 
void learn_convolutional_layer(convolutional_layer layer)
{
    gradient_delta_convolutional_layer(layer);
    learn_bias_convolutional_layer(layer);
    int m = layer.n;
    int n = layer.size*layer.size*layer.c;
    int k = convolutional_out_height(layer)*
            convolutional_out_width(layer)*
            layer.batch;
 
    float *a = layer.delta;
    float *b = layer.col_image;
    float *c = layer.filter_updates;
 
    gemm(0,1,m,n,k,1,a,k,b,k,1,c,n);
}
 
void backward_convolutional_layer(convolutional_layer layer, float *delta)
{
    int i;
    int m = layer.size*layer.size*layer.c;
    int k = layer.n;
    int n = convolutional_out_height(layer)*
            convolutional_out_width(layer)*
            layer.batch;
 
    float *a = layer.filters;
    float *b = layer.delta;
    float *c = layer.col_image;
 
 
    memset(c, 0, m*n*sizeof(float));
    gemm(1,0,m,n,k,1,a,m,b,n,1,c,n);
 
    memset(delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float));
    for(i = 0; i < layer.batch; ++i){
        col2im_cpu(c+i*n/layer.batch,  layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, delta+i*n/layer.batch);
    }
}
 
void update_convolutional_layer(convolutional_layer layer, float step, float momentum, float decay)
{
    int i;
    int size = layer.size*layer.size*layer.c*layer.n;
    for(i = 0; i < layer.n; ++i){
        layer.biases[i] += step*layer.bias_updates[i];
        layer.bias_updates[i] *= momentum;
    }
    for(i = 0; i < size; ++i){
        layer.filters[i] += step*(layer.filter_updates[i] - decay*layer.filters[i]);
        layer.filter_updates[i] *= momentum;
    }
}
/*
 
void backward_convolutional_layer2(convolutional_layer layer, float *input, float *delta)
{
    image in_delta = float_to_image(layer.h, layer.w, layer.c, delta);
    image out_delta = get_convolutional_delta(layer);
    int i,j;
    for(i = 0; i < layer.n; ++i){
        rotate_image(layer.kernels[i]);
    }
 
    zero_image(in_delta);
    upsample_image(out_delta, layer.stride, layer.upsampled);
    for(j = 0; j < in_delta.c; ++j){
        for(i = 0; i < layer.n; ++i){
            two_d_convolve(layer.upsampled, i, layer.kernels[i], j, 1, in_delta, j, layer.edge);
        }
    }
 
    for(i = 0; i < layer.n; ++i){
        rotate_image(layer.kernels[i]);
    }
}
 
 
void learn_convolutional_layer(convolutional_layer layer, float *input)
{
    int i;
    image in_image = float_to_image(layer.h, layer.w, layer.c, input);
    image out_delta = get_convolutional_delta(layer);
    gradient_delta_convolutional_layer(layer);
    for(i = 0; i < layer.n; ++i){
        kernel_update(in_image, layer.kernel_updates[i], layer.stride, i, out_delta, layer.edge);
        layer.bias_updates[i] += avg_image_layer(out_delta, i);
    }
}
 
void update_convolutional_layer(convolutional_layer layer, float step, float momentum, float decay)
{
    int i,j;
    for(i = 0; i < layer.n; ++i){
        layer.bias_momentum[i] = step*(layer.bias_updates[i]) 
                                + momentum*layer.bias_momentum[i];
        layer.biases[i] += layer.bias_momentum[i];
        layer.bias_updates[i] = 0;
        int pixels = layer.kernels[i].h*layer.kernels[i].w*layer.kernels[i].c;
        for(j = 0; j < pixels; ++j){
            layer.kernel_momentum[i].data[j] = step*(layer.kernel_updates[i].data[j] - decay*layer.kernels[i].data[j]) 
                                                + momentum*layer.kernel_momentum[i].data[j];
            layer.kernels[i].data[j] += layer.kernel_momentum[i].data[j];
        }
        zero_image(layer.kernel_updates[i]);
    }
}
*/
 
void test_convolutional_layer()
{
    convolutional_layer l = *make_convolutional_layer(1,4,4,1,1,3,1,LINEAR);
    float input[] =    {1,2,3,4,
                        5,6,7,8,
                        9,10,11,12,
                        13,14,15,16};
    float filter[] =   {.5, 0, .3,
                        0  , 1,  0,
                        .2 , 0,  1};
    float delta[] =    {1, 2,
                        3,  4};
    float in_delta[] = {.5,1,.3,.6,
                        5,6,7,8,
                        9,10,11,12,
                        13,14,15,16};
    l.filters = filter;
    forward_convolutional_layer(l, input);
    l.delta = delta;
    learn_convolutional_layer(l);
    image filter_updates = float_to_image(3,3,1,l.filter_updates);
    print_image(filter_updates);
    printf("Delta:\n");
    backward_convolutional_layer(l, in_delta);
    pm(4,4,in_delta);
}
 
image get_convolutional_filter(convolutional_layer layer, int i)
{
    int h = layer.size;
    int w = layer.size;
    int c = layer.c;
    return float_to_image(h,w,c,layer.filters+i*h*w*c);
}
 
image *weighted_sum_filters(convolutional_layer layer, image *prev_filters)
{
    image *filters = calloc(layer.n, sizeof(image));
    int i,j,k,c;
    if(!prev_filters){
        for(i = 0; i < layer.n; ++i){
            filters[i] = copy_image(get_convolutional_filter(layer, i));
        }
    }
    else{
        image base = prev_filters[0];
        for(i = 0; i < layer.n; ++i){
            image filter = get_convolutional_filter(layer, i);
            filters[i] = make_image(base.h, base.w, base.c);
            for(j = 0; j < layer.size; ++j){
                for(k = 0; k < layer.size; ++k){
                    for(c = 0; c < layer.c; ++c){
                        float weight = get_pixel(filter, j, k, c);
                        image prev_filter = copy_image(prev_filters[c]);
                        scale_image(prev_filter, weight);
                        add_into_image(prev_filter, filters[i], 0,0);
                        free_image(prev_filter);
                    }
                }
            }
        }
    }
    return filters;
}
 
image *visualize_convolutional_layer(convolutional_layer layer, char *window, image *prev_filters)
{
    image *single_filters = weighted_sum_filters(layer, 0);
    show_images(single_filters, layer.n, window);
 
    image delta = get_convolutional_image(layer);
    image dc = collapse_image_layers(delta, 1);
    char buff[256];
    sprintf(buff, "%s: Output", window);
    show_image(dc, buff);
    save_image(dc, buff);
    free_image(dc);
    return single_filters;
}