Joseph Redmon
2015-09-05 b5936b499abc94c0efffbcc99b5698574b59d860
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
#include <stdio.h>
 
#include "network.h"
#include "detection_layer.h"
#include "cost_layer.h"
#include "utils.h"
#include "parser.h"
#include "box.h"
 
#ifdef OPENCV
#include "opencv2/highgui/highgui_c.h"
#endif
 
char *coco_classes[] = {"person","bicycle","car","motorcycle","airplane","bus","train","truck","boat","traffic light","fire hydrant","stop sign","parking meter","bench","bird","cat","dog","horse","sheep","cow","elephant","bear","zebra","giraffe","backpack","umbrella","handbag","tie","suitcase","frisbee","skis","snowboard","sports ball","kite","baseball bat","baseball glove","skateboard","surfboard","tennis racket","bottle","wine glass","cup","fork","knife","spoon","bowl","banana","apple","sandwich","orange","broccoli","carrot","hot dog","pizza","donut","cake","chair","couch","potted plant","bed","dining table","toilet","tv","laptop","mouse","remote","keyboard","cell phone","microwave","oven","toaster","sink","refrigerator","book","clock","vase","scissors","teddy bear","hair drier","toothbrush"};
 
int coco_ids[] = {1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,22,23,24,25,27,28,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,67,70,72,73,74,75,76,77,78,79,80,81,82,84,85,86,87,88,89,90};
 
void draw_coco(image im, float *pred, int side, char *label)
{
    int classes = 1;
    int elems = 4+classes;
    int j;
    int r, c;
 
    for(r = 0; r < side; ++r){
        for(c = 0; c < side; ++c){
            j = (r*side + c) * elems;
            int class = max_index(pred+j, classes);
            if (pred[j+class] > 0.2){
                int width = pred[j+class]*5 + 1;
                printf("%f %s\n", pred[j+class], "object"); //coco_classes[class-1]);
                float red = get_color(0,class,classes);
                float green = get_color(1,class,classes);
                float blue = get_color(2,class,classes);
 
                j += classes;
 
                box predict = {pred[j+0], pred[j+1], pred[j+2], pred[j+3]};
                predict.x = (predict.x+c)/side;
                predict.y = (predict.y+r)/side;
                
                draw_bbox(im, predict, width, red, green, blue);
            }
        }
    }
    show_image(im, label);
}
 
void train_coco(char *cfgfile, char *weightfile)
{
    //char *train_images = "/home/pjreddie/data/coco/train.txt";
    char *train_images = "/home/pjreddie/data/voc/test/train.txt";
    char *backup_directory = "/home/pjreddie/backup/";
    srand(time(0));
    data_seed = time(0);
    char *base = basecfg(cfgfile);
    printf("%s\n", base);
    float avg_loss = -1;
    network net = parse_network_cfg(cfgfile);
    if(weightfile){
        load_weights(&net, weightfile);
    }
    printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
    int imgs = 128;
    int i = *net.seen/imgs;
    data train, buffer;
 
 
    layer l = net.layers[net.n - 1];
 
    int side = l.side;
    int classes = l.classes;
 
    list *plist = get_paths(train_images);
    int N = plist->size;
    char **paths = (char **)list_to_array(plist);
 
    load_args args = {0};
    args.w = net.w;
    args.h = net.h;
    args.paths = paths;
    args.n = imgs;
    args.m = plist->size;
    args.classes = classes;
    args.num_boxes = side;
    args.d = &buffer;
    args.type = REGION_DATA;
 
    pthread_t load_thread = load_data_in_thread(args);
    clock_t time;
    while(i*imgs < N*120){
        i += 1;
        time=clock();
        pthread_join(load_thread, 0);
        train = buffer;
        load_thread = load_data_in_thread(args);
 
        printf("Loaded: %lf seconds\n", sec(clock()-time));
 
/*
        image im = float_to_image(net.w, net.h, 3, train.X.vals[113]);
        image copy = copy_image(im);
        draw_coco(copy, train.y.vals[113], 7, "truth");
        cvWaitKey(0);
        free_image(copy);
        */
 
        time=clock();
        float loss = train_network(net, train);
        if (avg_loss < 0) avg_loss = loss;
        avg_loss = avg_loss*.9 + loss*.1;
 
        printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs);
        if((i-1)*imgs <= N && i*imgs > N){
            fprintf(stderr, "First stage done\n");
            net.learning_rate *= 10;
            char buff[256];
            sprintf(buff, "%s/%s_first_stage.weights", backup_directory, base);
            save_weights(net, buff);
        }
 
        if((i-1)*imgs <= 80*N && i*imgs > N*80){
            fprintf(stderr, "Second stage done.\n");
            char buff[256];
            sprintf(buff, "%s/%s_second_stage.weights", backup_directory, base);
            save_weights(net, buff);
        }
        if(i%1000==0){
            char buff[256];
            sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
            save_weights(net, buff);
        }
        free_data(train);
    }
    char buff[256];
    sprintf(buff, "%s/%s_final.weights", backup_directory, base);
    save_weights(net, buff);
}
 
void get_probs(float *predictions, int total, int classes, int inc, float **probs)
{
    int i,j;
    for (i = 0; i < total; ++i){
        int index = i*inc;
        float scale = predictions[index];
        probs[i][0] = scale;
        for(j = 0; j < classes; ++j){
            probs[i][j] = scale*predictions[index+j+1];
        }
    }
}
void get_boxes(float *predictions, int n, int num_boxes, int per_box, box *boxes)
{
    int i,j;
    for (i = 0; i < num_boxes*num_boxes; ++i){
        for(j = 0; j < n; ++j){
            int index = i*n+j;
            int offset = index*per_box;
            int row = i / num_boxes;
            int col = i % num_boxes;
            boxes[index].x = (predictions[offset + 0] + col) / num_boxes;
            boxes[index].y = (predictions[offset + 1] + row) / num_boxes;
            boxes[index].w = predictions[offset + 2];
            boxes[index].h = predictions[offset + 3];
        }
    }
}
 
void convert_cocos(float *predictions, int classes, int num_boxes, int num, int w, int h, float thresh, float **probs, box *boxes)
{
    int i,j;
    int per_box = 4+classes;
    for (i = 0; i < num_boxes*num_boxes*num; ++i){
        int offset = i*per_box;
        for(j = 0; j < classes; ++j){
            float prob = predictions[offset+j];
            probs[i][j] = (prob > thresh) ? prob : 0;
        }
        int row = i / num_boxes;
        int col = i % num_boxes;
        offset += classes;
        boxes[i].x = (predictions[offset + 0] + col) / num_boxes;
        boxes[i].y = (predictions[offset + 1] + row) / num_boxes;
        boxes[i].w = predictions[offset + 2];
        boxes[i].h = predictions[offset + 3];
    }
}
 
void print_cocos(FILE *fp, int image_id, box *boxes, float **probs, int num_boxes, int classes, int w, int h)
{
    int i, j;
    for(i = 0; i < num_boxes*num_boxes; ++i){
        float xmin = boxes[i].x - boxes[i].w/2.;
        float xmax = boxes[i].x + boxes[i].w/2.;
        float ymin = boxes[i].y - boxes[i].h/2.;
        float ymax = boxes[i].y + boxes[i].h/2.;
 
        if (xmin < 0) xmin = 0;
        if (ymin < 0) ymin = 0;
        if (xmax > w) xmax = w;
        if (ymax > h) ymax = h;
 
        float bx = xmin;
        float by = ymin;
        float bw = xmax - xmin;
        float bh = ymax - ymin;
 
        for(j = 0; j < classes; ++j){
            if (probs[i][j]) fprintf(fp, "{\"image_id\":%d, \"category_id\":%d, \"bbox\":[%f, %f, %f, %f], \"score\":%f},\n", image_id, coco_ids[j], bx, by, bw, bh, probs[i][j]);
        }
    }
}
 
int get_coco_image_id(char *filename)
{
    char *p = strrchr(filename, '_');
    return atoi(p+1);
}
 
void validate_recall(char *cfgfile, char *weightfile)
{
    network net = parse_network_cfg(cfgfile);
    if(weightfile){
        load_weights(&net, weightfile);
    }
    set_batch_network(&net, 1);
    fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
    srand(time(0));
 
    char *val_images = "/home/pjreddie/data/voc/test/2007_test.txt";
    list *plist = get_paths(val_images);
    char **paths = (char **)list_to_array(plist);
 
    layer l = net.layers[net.n - 1];
 
    int num_boxes = l.side;
    int num = l.n;
    int classes = l.classes;
 
    int j;
 
    box *boxes = calloc(num_boxes*num_boxes*num, sizeof(box));
    float **probs = calloc(num_boxes*num_boxes*num, sizeof(float *));
    for(j = 0; j < num_boxes*num_boxes*num; ++j) probs[j] = calloc(classes+1, sizeof(float *));
 
    int N = plist->size;
    int i=0;
    int k;
 
    float iou_thresh = .5;
    float thresh = .1;
    int total = 0;
    int correct = 0;
    float avg_iou = 0;
    int nms = 1;
    int proposals = 0;
    int save = 1;
 
    for (i = 0; i < N; ++i) {
        char *path = paths[i];
        image orig = load_image_color(path, 0, 0);
        image resized = resize_image(orig, net.w, net.h);
 
        float *X = resized.data;
        float *predictions = network_predict(net, X);
        get_boxes(predictions+1+classes, num, num_boxes, 5+classes, boxes);
        get_probs(predictions, num*num_boxes*num_boxes, classes, 5+classes, probs);
        if (nms) do_nms(boxes, probs, num*num_boxes*num_boxes, (classes>0) ? classes : 1, iou_thresh);
 
        char *labelpath = find_replace(path, "images", "labels");
        labelpath = find_replace(labelpath, "JPEGImages", "labels");
        labelpath = find_replace(labelpath, ".jpg", ".txt");
        labelpath = find_replace(labelpath, ".JPEG", ".txt");
 
        int num_labels = 0;
        box_label *truth = read_boxes(labelpath, &num_labels);
        for(k = 0; k < num_boxes*num_boxes*num; ++k){
            if(probs[k][0] > thresh){
                ++proposals;
                if(save){
                    char buff[256];
                    sprintf(buff, "/data/extracted/nms_preds/%d", proposals);
                    int dx = (boxes[k].x - boxes[k].w/2) * orig.w;
                    int dy = (boxes[k].y - boxes[k].h/2) * orig.h;
                    int w = boxes[k].w * orig.w;
                    int h = boxes[k].h * orig.h;
                    image cropped = crop_image(orig, dx, dy, w, h);
                    image sized = resize_image(cropped, 224, 224);
#ifdef OPENCV
                    save_image_jpg(sized, buff);
#endif
                    free_image(sized);
                    free_image(cropped);
                    sprintf(buff, "/data/extracted/nms_pred_boxes/%d.txt", proposals);
                    char *im_id = basecfg(path);
                    FILE *fp = fopen(buff, "w");
                    fprintf(fp, "%s %d %d %d %d\n", im_id, dx, dy, dx+w, dy+h);
                    fclose(fp);
                    free(im_id);
                }
            }
        }
        for (j = 0; j < num_labels; ++j) {
            ++total;
            box t = {truth[j].x, truth[j].y, truth[j].w, truth[j].h};
            float best_iou = 0;
            for(k = 0; k < num_boxes*num_boxes*num; ++k){
                float iou = box_iou(boxes[k], t);
                if(probs[k][0] > thresh && iou > best_iou){
                    best_iou = iou;
                }
            }
            avg_iou += best_iou;
            if(best_iou > iou_thresh){
                ++correct;
            }
        }
        free(truth);
        free_image(orig);
        free_image(resized);
        fprintf(stderr, "%5d %5d %5d\tRPs/Img: %.2f\tIOU: %.2f%%\tRecall:%.2f%%\n", i, correct, total, (float)proposals/(i+1), avg_iou*100/total, 100.*correct/total);
    }
}
 
void extract_boxes(char *cfgfile, char *weightfile)
{
    network net = parse_network_cfg(cfgfile);
    if(weightfile){
        load_weights(&net, weightfile);
    }
    set_batch_network(&net, 1);
    fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
    srand(time(0));
 
    char *val_images = "/home/pjreddie/data/voc/test/train.txt";
    list *plist = get_paths(val_images);
    char **paths = (char **)list_to_array(plist);
 
    layer l = net.layers[net.n - 1];
 
    int num_boxes = l.side;
    int num = l.n;
    int classes = l.classes;
 
    int j;
 
    box *boxes = calloc(num_boxes*num_boxes*num, sizeof(box));
    float **probs = calloc(num_boxes*num_boxes*num, sizeof(float *));
    for(j = 0; j < num_boxes*num_boxes*num; ++j) probs[j] = calloc(classes+1, sizeof(float *));
 
    int N = plist->size;
    int i=0;
    int k;
 
    int count = 0;
    float iou_thresh = .3;
 
    for (i = 0; i < N; ++i) {
        fprintf(stderr, "%5d %5d\n", i, count);
        char *path = paths[i];
        image orig = load_image_color(path, 0, 0);
        image resized = resize_image(orig, net.w, net.h);
 
        float *X = resized.data;
        float *predictions = network_predict(net, X);
        get_boxes(predictions+1+classes, num, num_boxes, 5+classes, boxes);
        get_probs(predictions, num*num_boxes*num_boxes, classes, 5+classes, probs);
 
        char *labelpath = find_replace(path, "images", "labels");
        labelpath = find_replace(labelpath, "JPEGImages", "labels");
        labelpath = find_replace(labelpath, ".jpg", ".txt");
        labelpath = find_replace(labelpath, ".JPEG", ".txt");
 
        int num_labels = 0;
        box_label *truth = read_boxes(labelpath, &num_labels);
        FILE *label = stdin;
        for(k = 0; k < num_boxes*num_boxes*num; ++k){
            int overlaps = 0;
            for (j = 0; j < num_labels; ++j) {
                box t = {truth[j].x, truth[j].y, truth[j].w, truth[j].h};
                float iou = box_iou(boxes[k], t);
                if (iou > iou_thresh){
                    if (!overlaps) {
                        char buff[256];
                        sprintf(buff, "/data/extracted/labels/%d.txt", count);
                        label = fopen(buff, "w");
                        overlaps = 1;
                    }
                    fprintf(label, "%d %f\n", truth[j].id, iou);
                }
            }
            if (overlaps) {
                char buff[256];
                sprintf(buff, "/data/extracted/imgs/%d", count++);
                int dx = (boxes[k].x - boxes[k].w/2) * orig.w;
                int dy = (boxes[k].y - boxes[k].h/2) * orig.h;
                int w = boxes[k].w * orig.w;
                int h = boxes[k].h * orig.h;
                image cropped = crop_image(orig, dx, dy, w, h);
                image sized = resize_image(cropped, 224, 224);
#ifdef OPENCV
                save_image_jpg(sized, buff);
#endif
                free_image(sized);
                free_image(cropped);
                fclose(label);
            }
        }
        free(truth);
        free_image(orig);
        free_image(resized);
    }
}
 
void validate_coco(char *cfgfile, char *weightfile)
{
    network net = parse_network_cfg(cfgfile);
    if(weightfile){
        load_weights(&net, weightfile);
    }
    set_batch_network(&net, 1);
    fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
    srand(time(0));
 
    char *base = "/home/pjreddie/backup/";
    list *plist = get_paths("data/coco_val_5k.list");
    char **paths = (char **)list_to_array(plist);
 
    int num_boxes = 9;
    int num = 4;
    int classes = 1;
 
    int j;
    char buff[1024];
    snprintf(buff, 1024, "%s/coco_results.json", base);
    FILE *fp = fopen(buff, "w");
    fprintf(fp, "[\n");
 
    box *boxes = calloc(num_boxes*num_boxes*num, sizeof(box));
    float **probs = calloc(num_boxes*num_boxes*num, sizeof(float *));
    for(j = 0; j < num_boxes*num_boxes*num; ++j) probs[j] = calloc(classes, sizeof(float *));
 
    int m = plist->size;
    int i=0;
    int t;
 
    float thresh = .01;
    int nms = 1;
    float iou_thresh = .5;
 
    load_args args = {0};
    args.w = net.w;
    args.h = net.h;
    args.type = IMAGE_DATA;
 
    int nthreads = 8;
    image *val = calloc(nthreads, sizeof(image));
    image *val_resized = calloc(nthreads, sizeof(image));
    image *buf = calloc(nthreads, sizeof(image));
    image *buf_resized = calloc(nthreads, sizeof(image));
    pthread_t *thr = calloc(nthreads, sizeof(pthread_t));
    for(t = 0; t < nthreads; ++t){
        args.path = paths[i+t];
        args.im = &buf[t];
        args.resized = &buf_resized[t];
        thr[t] = load_data_in_thread(args);
    }
    time_t start = time(0);
    for(i = nthreads; i < m+nthreads; i += nthreads){
        fprintf(stderr, "%d\n", i);
        for(t = 0; t < nthreads && i+t-nthreads < m; ++t){
            pthread_join(thr[t], 0);
            val[t] = buf[t];
            val_resized[t] = buf_resized[t];
        }
        for(t = 0; t < nthreads && i+t < m; ++t){
            args.path = paths[i+t];
            args.im = &buf[t];
            args.resized = &buf_resized[t];
            thr[t] = load_data_in_thread(args);
        }
        for(t = 0; t < nthreads && i+t-nthreads < m; ++t){
            char *path = paths[i+t-nthreads];
            int image_id = get_coco_image_id(path);
            float *X = val_resized[t].data;
            float *predictions = network_predict(net, X);
            int w = val[t].w;
            int h = val[t].h;
            convert_cocos(predictions, classes, num_boxes, num, w, h, thresh, probs, boxes);
            if (nms) do_nms(boxes, probs, num_boxes, classes, iou_thresh);
            print_cocos(fp, image_id, boxes, probs, num_boxes, classes, w, h);
            free_image(val[t]);
            free_image(val_resized[t]);
        }
    }
    fseek(fp, -2, SEEK_CUR); 
    fprintf(fp, "\n]\n");
    fclose(fp);
    fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start));
}
 
void test_coco(char *cfgfile, char *weightfile, char *filename)
{
 
    network net = parse_network_cfg(cfgfile);
    if(weightfile){
        load_weights(&net, weightfile);
    }
    set_batch_network(&net, 1);
    srand(2222222);
    clock_t time;
    char input[256];
    while(1){
        if(filename){
            strncpy(input, filename, 256);
        } else {
            printf("Enter Image Path: ");
            fflush(stdout);
            fgets(input, 256, stdin);
            strtok(input, "\n");
        }
        image im = load_image_color(input,0,0);
        image sized = resize_image(im, net.w, net.h);
        float *X = sized.data;
        time=clock();
        float *predictions = network_predict(net, X);
        printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
        draw_coco(im, predictions, 7, "predictions");
        free_image(im);
        free_image(sized);
#ifdef OPENCV
        cvWaitKey(0);
        cvDestroyAllWindows();
#endif
        if (filename) break;
    }
}
 
void run_coco(int argc, char **argv)
{
    if(argc < 4){
        fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
        return;
    }
 
    char *cfg = argv[3];
    char *weights = (argc > 4) ? argv[4] : 0;
    char *filename = (argc > 5) ? argv[5]: 0;
    if(0==strcmp(argv[2], "test")) test_coco(cfg, weights, filename);
    else if(0==strcmp(argv[2], "train")) train_coco(cfg, weights);
    else if(0==strcmp(argv[2], "extract")) extract_boxes(cfg, weights);
    else if(0==strcmp(argv[2], "valid")) validate_recall(cfg, weights);
}