Joseph Redmon
2016-09-02 b8eb8b0a4016232c8da95c26501ac60ea9491901
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
#include "region_layer.h"
#include "activations.h"
#include "softmax_layer.h"
#include "blas.h"
#include "box.h"
#include "cuda.h"
#include "utils.h"
#include <stdio.h>
#include <assert.h>
#include <string.h>
#include <stdlib.h>
 
region_layer make_region_layer(int batch, int w, int h, int n, int classes, int coords)
{
    region_layer l = {0};
    l.type = REGION;
 
    l.n = n;
    l.batch = batch;
    l.h = h;
    l.w = w;
    l.classes = classes;
    l.coords = coords;
    l.cost = calloc(1, sizeof(float));
    l.outputs = h*w*n*(classes + coords + 1);
    l.inputs = l.outputs;
    l.truths = 30*(5);
    l.delta = calloc(batch*l.outputs, sizeof(float));
    l.output = calloc(batch*l.outputs, sizeof(float));
#ifdef GPU
    l.output_gpu = cuda_make_array(l.output, batch*l.outputs);
    l.delta_gpu = cuda_make_array(l.delta, batch*l.outputs);
#endif
 
    fprintf(stderr, "Region Layer\n");
    srand(0);
 
    return l;
}
 
box get_region_box2(float *x, int index, int i, int j, int w, int h)
{
    float aspect = exp(x[index+0]);
    float scale  = logistic_activate(x[index+1]);
    float move_x = x[index+2];
    float move_y = x[index+3];
 
    box b;
    b.w = sqrt(scale * aspect);
    b.h = b.w * 1./aspect;
    b.x = move_x * b.w + (i + .5)/w;
    b.y = move_y * b.h + (j + .5)/h;
    return b;
}
 
float delta_region_box2(box truth, float *output, int index, int i, int j, int w, int h, float *delta)
{
    box pred = get_region_box2(output, index, i, j, w, h);
    float iou = box_iou(pred, truth);
    float true_aspect = truth.w/truth.h;
    float true_scale = truth.w*truth.h;
 
    float true_dx = (truth.x - (i+.5)/w) / truth.w;
    float true_dy = (truth.y - (j+.5)/h) / truth.h;
    delta[index + 0] = (true_aspect - exp(output[index + 0])) * exp(output[index + 0]);
    delta[index + 1] = (true_scale - logistic_activate(output[index + 1])) * logistic_gradient(logistic_activate(output[index + 1]));
    delta[index + 2] = true_dx - output[index + 2];
    delta[index + 3] = true_dy - output[index + 3];
    return iou;
}
 
box get_region_box(float *x, int index, int i, int j, int w, int h, int adjust, int logistic)
{
    box b;
    b.x = (x[index + 0] + i + .5)/w;
    b.y = (x[index + 1] + j + .5)/h;
    b.w = x[index + 2];
    b.h = x[index + 3];
    if(logistic){
        b.w = logistic_activate(x[index + 2]);
        b.h = logistic_activate(x[index + 3]);
    }
    //if(adjust && b.w < .01) b.w = .01;
    //if(adjust && b.h < .01) b.h = .01;
    return b;
}
 
float delta_region_box(box truth, float *output, int index, int i, int j, int w, int h, float *delta, int logistic, float scale)
{
    box pred = get_region_box(output, index, i, j, w, h, 0, logistic);
    float iou = box_iou(pred, truth);
 
    delta[index + 0] = scale * (truth.x - pred.x);
    delta[index + 1] = scale * (truth.y - pred.y);
    delta[index + 2] = scale * ((truth.w - pred.w)*(logistic ? logistic_gradient(pred.w) : 1));
    delta[index + 3] = scale * ((truth.h - pred.h)*(logistic ? logistic_gradient(pred.h) : 1));
    return iou;
}
 
float logit(float x)
{
    return log(x/(1.-x));
}
 
float tisnan(float x)
{
    return (x != x);
}
 
#define LOG 1
 
void forward_region_layer(const region_layer l, network_state state)
{
    int i,j,b,t,n;
    int size = l.coords + l.classes + 1;
    memcpy(l.output, state.input, l.outputs*l.batch*sizeof(float));
    reorg(l.output, l.w*l.h, size*l.n, l.batch, 1);
    for (b = 0; b < l.batch; ++b){
        for(i = 0; i < l.h*l.w*l.n; ++i){
            int index = size*i + b*l.outputs;
            l.output[index + 4] = logistic_activate(l.output[index + 4]);
            if(l.softmax){
                softmax_array(l.output + index + 5, l.classes, 1, l.output + index + 5);
            }
        }
    }
    if(!state.train) return;
    memset(l.delta, 0, l.outputs * l.batch * sizeof(float));
    float avg_iou = 0;
    float avg_cat = 0;
    float avg_obj = 0;
    float avg_anyobj = 0;
    int count = 0;
    *(l.cost) = 0;
    for (b = 0; b < l.batch; ++b) {
        for (j = 0; j < l.h; ++j) {
            for (i = 0; i < l.w; ++i) {
                for (n = 0; n < l.n; ++n) {
                    int index = size*(j*l.w*l.n + i*l.n + n) + b*l.outputs;
                    box pred = get_region_box(l.output, index, i, j, l.w, l.h, 1, LOG);
                    float best_iou = 0;
                    for(t = 0; t < 30; ++t){
                        box truth = float_to_box(state.truth + t*5 + b*l.truths);
                        if(!truth.x) break;
                        float iou = box_iou(pred, truth);
                        if (iou > best_iou) best_iou = iou;
                    }
                    avg_anyobj += l.output[index + 4];
                    l.delta[index + 4] = l.noobject_scale * ((0 - l.output[index + 4]) * logistic_gradient(l.output[index + 4]));
                    if(best_iou > .5) l.delta[index + 4] = 0;
 
                    /*
                    if(*(state.net.seen) < 6400){
                        box truth = {0};
                        truth.x = (i + .5)/l.w;
                        truth.y = (j + .5)/l.h;
                        truth.w = .5;
                        truth.h = .5;
                        delta_region_box(truth, l.output, index, i, j, l.w, l.h, l.delta, LOG, 1);
                    }
                    */
                }
            }
        }
        for(t = 0; t < 30; ++t){
            box truth = float_to_box(state.truth + t*5 + b*l.truths);
            int class = state.truth[t*5 + b*l.truths + 4];
            if(!truth.x) break;
            float best_iou = 0;
            int best_index = 0;
            int best_n = 0;
            i = (truth.x * l.w);
            j = (truth.y * l.h);
            //printf("%d %f %d %f\n", i, truth.x*l.w, j, truth.y*l.h);
            box truth_shift = truth;
            truth_shift.x = 0;
            truth_shift.y = 0;
            printf("index %d %d\n",i, j);
            for(n = 0; n < l.n; ++n){
                int index = size*(j*l.w*l.n + i*l.n + n) + b*l.outputs;
                box pred = get_region_box(l.output, index, i, j, l.w, l.h, 1, LOG);
                printf("pred: (%f, %f) %f x %f\n", pred.x, pred.y, pred.w, pred.h);
                pred.x = 0;
                pred.y = 0;
                float iou = box_iou(pred, truth_shift);
                if (iou > best_iou){
                    best_index = index;
                    best_iou = iou;
                    best_n = n;
                }
            }
            printf("%d %f (%f, %f) %f x %f\n", best_n, best_iou, truth.x, truth.y, truth.w, truth.h);
 
            float iou = delta_region_box(truth, l.output, best_index, i, j, l.w, l.h, l.delta, LOG, l.coord_scale);
            avg_iou += iou;
 
            //l.delta[best_index + 4] = iou - l.output[best_index + 4];
            avg_obj += l.output[best_index + 4];
            l.delta[best_index + 4] = l.object_scale * (1 - l.output[best_index + 4]) * logistic_gradient(l.output[best_index + 4]);
            if (l.rescore) {
                l.delta[best_index + 4] = l.object_scale * (iou - l.output[best_index + 4]) * logistic_gradient(l.output[best_index + 4]);
            }
            //printf("%f\n", l.delta[best_index+1]);
            /*
               if(isnan(l.delta[best_index+1])){
               printf("%f\n", true_scale);
               printf("%f\n", l.output[best_index + 1]);
               printf("%f\n", truth.w);
               printf("%f\n", truth.h);
               error("bad");
               }
             */
            for(n = 0; n < l.classes; ++n){
                l.delta[best_index + 5 + n] = l.class_scale * (((n == class)?1 : 0) - l.output[best_index + 5 + n]);
                if(n == class) avg_cat += l.output[best_index + 5 + n];
            }
            /*
               if(0){
               printf("truth: %f %f %f %f\n", truth.x, truth.y, truth.w, truth.h);
               printf("pred: %f %f %f %f\n\n", pred.x, pred.y, pred.w, pred.h);
               float aspect = exp(true_aspect);
               float scale  = logistic_activate(true_scale);
               float move_x = true_dx;
               float move_y = true_dy;
 
               box b;
               b.w = sqrt(scale * aspect);
               b.h = b.w * 1./aspect;
               b.x = move_x * b.w + (i + .5)/l.w;
               b.y = move_y * b.h + (j + .5)/l.h;
               printf("%f %f\n", b.x, truth.x);
               printf("%f %f\n", b.y, truth.y);
               printf("%f %f\n", b.w, truth.w);
               printf("%f %f\n", b.h, truth.h);
            //printf("%f\n", box_iou(b, truth));
            }
             */
            ++count;
        }
    }
    printf("\n");
    reorg(l.delta, l.w*l.h, size*l.n, l.batch, 0);
    *(l.cost) = pow(mag_array(l.delta, l.outputs * l.batch), 2);
    printf("Region Avg IOU: %f, Class: %f, Obj: %f, No Obj: %f, count: %d\n", avg_iou/count, avg_cat/count, avg_obj/count, avg_anyobj/(l.w*l.h*l.n*l.batch), count);
}
 
void backward_region_layer(const region_layer l, network_state state)
{
    axpy_cpu(l.batch*l.inputs, 1, l.delta, 1, state.delta, 1);
}
 
#ifdef GPU
 
void forward_region_layer_gpu(const region_layer l, network_state state)
{
    /*
       if(!state.train){
       copy_ongpu(l.batch*l.inputs, state.input, 1, l.output_gpu, 1);
       return;
       }
     */
 
    float *in_cpu = calloc(l.batch*l.inputs, sizeof(float));
    float *truth_cpu = 0;
    if(state.truth){
        int num_truth = l.batch*l.truths;
        truth_cpu = calloc(num_truth, sizeof(float));
        cuda_pull_array(state.truth, truth_cpu, num_truth);
    }
    cuda_pull_array(state.input, in_cpu, l.batch*l.inputs);
    network_state cpu_state = state;
    cpu_state.train = state.train;
    cpu_state.truth = truth_cpu;
    cpu_state.input = in_cpu;
    forward_region_layer(l, cpu_state);
    cuda_push_array(l.output_gpu, l.output, l.batch*l.outputs);
    cuda_push_array(l.delta_gpu, l.delta, l.batch*l.outputs);
    free(cpu_state.input);
    if(cpu_state.truth) free(cpu_state.truth);
}
 
void backward_region_layer_gpu(region_layer l, network_state state)
{
    axpy_ongpu(l.batch*l.outputs, 1, l.delta_gpu, 1, state.delta, 1);
    //copy_ongpu(l.batch*l.inputs, l.delta_gpu, 1, state.delta, 1);
}
#endif