import random
|
import math
|
import cv2
|
import numpy as np
|
import imutils
|
import pandas as pd
|
import fetch_data
|
|
card_mask = cv2.imread('data/mask.png')
|
|
|
class ImageGenerator:
|
"""
|
A template for generating a training image.
|
"""
|
def __init__(self, img_bg, cards, width, height):
|
"""
|
:param img_bg: background (textile) image
|
:param cards: list of Card objects
|
:param width: width of the training image
|
:param height: height of the training image
|
"""
|
self.img_bg = img_bg
|
self.cards = cards
|
self.img_result = None
|
self.width = width
|
self.height = height
|
pass
|
|
def display(self):
|
"""
|
Display the current state of the generator
|
:return: none
|
"""
|
img_bg = cv2.resize(self.img_bg, (self.width, self.height))
|
|
for card in self.cards:
|
card_x = int(card.x + 0.5)
|
card_y = int(card.y + 0.5)
|
print(card_x, card_y, card.theta, card.scale)
|
# Scale & rotate card image
|
img_card = cv2.resize(card.img, (int(len(card.img[0]) * card.scale), int(len(card.img) * card.scale)))
|
mask_scale = cv2.resize(card_mask, (int(len(card_mask[0]) * card.scale), int(len(card_mask) * card.scale)))
|
img_mask = cv2.bitwise_and(img_card, mask_scale)
|
img_rotate = imutils.rotate_bound(img_mask, card.theta / math.pi * 180)
|
|
# Calculate the position of the card image in relation to the background
|
# Crop the card image if it's out of boundary
|
card_w = len(img_rotate[0])
|
card_h = len(img_rotate)
|
card_crop_x1 = max(0, card_w // 2 - card_x)
|
card_crop_x2 = min(card_w, card_w // 2 + len(img_bg[0]) - card_x)
|
card_crop_y1 = max(0, card_h // 2 - card_y)
|
card_crop_y2 = min(card_h, card_h // 2 + len(img_bg) - card_y)
|
img_card_crop = img_rotate[card_crop_y1:card_crop_y2, card_crop_x1:card_crop_x2]
|
|
# Calculate the position of the corresponding area in the background
|
bg_crop_x1 = max(0, card_x - (card_w // 2))
|
bg_crop_x2 = min(len(img_bg[0]), int(card_x + (card_w / 2) + 0.5))
|
bg_crop_y1 = max(0, card_y - (card_h // 2))
|
bg_crop_y2 = min(len(img_bg), int(card_y + (card_h / 2) + 0.5))
|
img_bg_crop = img_bg[bg_crop_y1:bg_crop_y2, bg_crop_x1:bg_crop_x2]
|
|
# Override the background with the current card
|
img_bg_crop = np.where(img_card_crop, img_card_crop, img_bg_crop)
|
img_bg[bg_crop_y1:bg_crop_y2, bg_crop_x1:bg_crop_x2] = img_bg_crop
|
cv2.imshow('Result', img_bg)
|
cv2.waitKey(0)
|
pass
|
|
def generate_horizontal_span(self):
|
"""
|
Generating the first scenario where the cards are laid out in a straight horizontal line
|
:return: none
|
"""
|
pass
|
|
def generate_vertical_span(self):
|
"""
|
Generating the second scenario where the cards are laid out in a straight vertical line
|
:return: none
|
"""
|
pass
|
|
def generate_fan_out(self):
|
"""
|
Generating the third scenario where the cards are laid out in a fan shape
|
:return: none
|
"""
|
pass
|
|
def export_training_data(self, out_dir):
|
"""
|
Export the generated training image along with the txt file for all bounding boxes
|
:return: none
|
"""
|
pass
|
|
|
class Card:
|
"""
|
A class for storing required information about a card in relation to the ImageGenerator
|
"""
|
def __init__(self, img, card_info, objects, generator=None, x=None, y=None, theta=None, scale=None):
|
"""
|
:param img: image of the card
|
:param card_info: details like name, mana cost, type, set, etc
|
:param objects: list of ExtractedObjects like mana & set symbol, etc
|
:param generator: ImageGenerator object that the card is bound to
|
:param x: X-coordinate of the card's centre in relation to the generator
|
:param y: Y-coordinate of the card's centre in relation to the generator
|
:param theta: angle of rotation of the card in relation to the generator
|
:param scale: scale of the card in the generator in relation to the original image
|
"""
|
self.img = img
|
self.info = card_info
|
self.objects = objects
|
self.generator = generator
|
self.x = x
|
self.y = y
|
self.theta = theta
|
self.scale = scale
|
pass
|
|
def bind_to_generator(self, generator, x=0, y=0, theta=0.0, scale=1.0):
|
"""
|
Bind this card to an ImageGenerator object.
|
:param generator: generator to be bound with
|
:param x: new X-coordinate for the centre of the card
|
:param y: new Y-coordinate for the centre of the card
|
:param theta: new angle for the card
|
:param scale: new scale for the card
|
:return: none
|
"""
|
self.generator = generator
|
self.x = x
|
self.y = y
|
self.theta = theta
|
self.scale = scale
|
generator.cards.append(self)
|
pass
|
|
def shift(self, x, y):
|
"""
|
Apply a X/Y translation on this image
|
:param x: amount of X-translation. If range is given, translate by a random amount within that range
|
:param y: amount of Y-translation. Refer to x when a range is given.
|
:return: none
|
"""
|
if isinstance(x, tuple) or (isinstance(x, list) and len(x) == 2):
|
self.x += random.uniform(x[0], x[1])
|
else:
|
self.x += x
|
if isinstance(y, tuple) or (isinstance(y, list) and len(y) == 2):
|
self.y += random.uniform(y[0], y[1])
|
else:
|
self.y += y
|
pass
|
|
def rotate(self, centre, theta=None):
|
"""
|
Apply a rotation on this image with a centre
|
:param centre: coordinate of the centre of the rotation in relation to the centre of this card
|
:param theta: amount of rotation in radian (clockwise). If a range is given, rotate by a random amount within
|
that range
|
:return: none
|
"""
|
if isinstance(theta, tuple) or (isinstance(theta, list) and len(theta) == 2):
|
theta = random.uniform(theta[0], theta[1])
|
|
# Rotation math
|
self.x -= -centre[1] * math.sin(theta) + centre[0] * math.cos(theta)
|
self.y -= centre[1] * math.cos(theta) + centre[0] * math.sin(theta)
|
|
# Offset for the coordinate translation
|
self.x += centre[0]
|
self.y += centre[1]
|
|
self.theta += theta
|
pass
|
|
|
class ExtractedObject:
|
"""
|
Simple struct to hold information about an extracted object
|
"""
|
def __init__(self, label, key_pts):
|
self.label = label
|
self.key_pts = key_pts
|
|
|
def main():
|
random.seed()
|
|
img_bg = cv2.imread('data/frilly_0007.jpg')
|
#img = cv2.imread('data/c16-143-burgeoning.png')
|
|
generator = ImageGenerator(img_bg, [], 1440, 960)
|
card_pool = pd.DataFrame()
|
for set_name in fetch_data.all_set_list:
|
df = fetch_data.load_all_cards_text('data/csv/%s.csv' % set_name)
|
card_info = df.iloc[random.randint(0, df.shape[0] - 1)]
|
# Currently ignoring planeswalker cards due to their different card layout
|
is_planeswalker = 'Planeswalker' in card_info['type_line']
|
if not is_planeswalker:
|
card_pool = card_pool.append(card_info)
|
|
for i in [random.randrange(0, card_pool.shape[0] - 1, 1) for _ in range(10)]:
|
card_info = card_pool.iloc[i]
|
img_name = '../usb/data/png/%s/%s_%s.png' % (card_info['set'], card_info['collector_number'],
|
fetch_data.get_valid_filename(card_info['name']))
|
print(img_name)
|
card_img = cv2.imread(img_name)
|
if card_img is None:
|
fetch_data.fetch_card_image(card_info, out_dir='../usb/data/png/%s' % card_info['set'])
|
card_img = cv2.imread(img_name)
|
card = Card(card_img, card_info, None)
|
|
card.bind_to_generator(generator, x=random.uniform(0, generator.width), y=random.uniform(0, generator.height),
|
theta=0, scale=0.5)
|
card.shift([-100, 100], [-100, 100])
|
card.rotate((0, 0), [-math.pi, math.pi])
|
generator.display()
|
pass
|
|
|
if __name__ == '__main__':
|
main()
|