#include "network.h"
|
#include "cost_layer.h"
|
#include "utils.h"
|
#include "parser.h"
|
|
#ifdef OPENCV
|
#include "opencv2/highgui/highgui_c.h"
|
#endif
|
|
typedef struct {
|
float *x;
|
float *y;
|
} float_pair;
|
|
float_pair get_rnn_data(char *text, int len, int batch, int steps)
|
{
|
float *x = calloc(batch * steps * 256, sizeof(float));
|
float *y = calloc(batch * steps * 256, sizeof(float));
|
int i,j;
|
for(i = 0; i < batch; ++i){
|
int index = rand() %(len - steps - 1);
|
int done = 1;
|
while(!done){
|
index = rand() %(len - steps - 1);
|
while(index < len-steps-1 && text[index++] != '\n');
|
if (index < len-steps-1) done = 1;
|
}
|
for(j = 0; j < steps; ++j){
|
x[(j*batch + i)*256 + text[index + j]] = 1;
|
y[(j*batch + i)*256 + text[index + j + 1]] = 1;
|
}
|
}
|
float_pair p;
|
p.x = x;
|
p.y = y;
|
return p;
|
}
|
|
void train_char_rnn(char *cfgfile, char *weightfile, char *filename)
|
{
|
FILE *fp = fopen(filename, "r");
|
//FILE *fp = fopen("data/ab.txt", "r");
|
//FILE *fp = fopen("data/grrm/asoiaf.txt", "r");
|
|
fseek(fp, 0, SEEK_END);
|
size_t size = ftell(fp);
|
fseek(fp, 0, SEEK_SET);
|
|
char *text = calloc(size, sizeof(char));
|
fread(text, 1, size, fp);
|
fclose(fp);
|
|
char *backup_directory = "/home/pjreddie/backup/";
|
srand(time(0));
|
data_seed = time(0);
|
char *base = basecfg(cfgfile);
|
fprintf(stderr, "%s\n", base);
|
float avg_loss = -1;
|
network net = parse_network_cfg(cfgfile);
|
if(weightfile){
|
load_weights(&net, weightfile);
|
}
|
fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
|
int batch = net.batch;
|
int steps = net.time_steps;
|
int i = (*net.seen)/net.batch;
|
|
clock_t time;
|
while(get_current_batch(net) < net.max_batches){
|
i += 1;
|
time=clock();
|
float_pair p = get_rnn_data(text, size, batch/steps, steps);
|
|
float loss = train_network_datum(net, p.x, p.y) / (batch);
|
free(p.x);
|
free(p.y);
|
if (avg_loss < 0) avg_loss = loss;
|
avg_loss = avg_loss*.9 + loss*.1;
|
|
fprintf(stderr, "%d: %f, %f avg, %f rate, %lf seconds\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time));
|
if(i%100==0){
|
char buff[256];
|
sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
|
save_weights(net, buff);
|
}
|
if(i%10==0){
|
char buff[256];
|
sprintf(buff, "%s/%s.backup", backup_directory, base);
|
save_weights(net, buff);
|
}
|
}
|
char buff[256];
|
sprintf(buff, "%s/%s_final.weights", backup_directory, base);
|
save_weights(net, buff);
|
}
|
|
void test_char_rnn(char *cfgfile, char *weightfile, int num, char *seed, float temp, int rseed)
|
{
|
srand(rseed);
|
char *base = basecfg(cfgfile);
|
fprintf(stderr, "%s\n", base);
|
|
network net = parse_network_cfg(cfgfile);
|
if(weightfile){
|
load_weights(&net, weightfile);
|
}
|
|
int i, j;
|
for(i = 0; i < net.n; ++i) net.layers[i].temperature = temp;
|
char c;
|
int len = strlen(seed);
|
float *input = calloc(256, sizeof(float));
|
for(i = 0; i < len-1; ++i){
|
c = seed[i];
|
input[(int)c] = 1;
|
network_predict(net, input);
|
input[(int)c] = 0;
|
printf("%c", c);
|
}
|
c = seed[len-1];
|
for(i = 0; i < num; ++i){
|
printf("%c", c);
|
float r = rand_uniform(0,1);
|
float sum = 0;
|
input[(int)c] = 1;
|
float *out = network_predict(net, input);
|
input[(int)c] = 0;
|
for(j = 0; j < 256; ++j){
|
sum += out[j];
|
if(sum > r) break;
|
}
|
c = j;
|
}
|
printf("\n");
|
}
|
|
void valid_char_rnn(char *cfgfile, char *weightfile, char *filename)
|
{
|
FILE *fp = fopen(filename, "r");
|
//FILE *fp = fopen("data/ab.txt", "r");
|
//FILE *fp = fopen("data/grrm/asoiaf.txt", "r");
|
|
fseek(fp, 0, SEEK_END);
|
size_t size = ftell(fp);
|
fseek(fp, 0, SEEK_SET);
|
|
char *text = calloc(size, sizeof(char));
|
fread(text, 1, size, fp);
|
fclose(fp);
|
|
char *base = basecfg(cfgfile);
|
fprintf(stderr, "%s\n", base);
|
|
network net = parse_network_cfg(cfgfile);
|
if(weightfile){
|
load_weights(&net, weightfile);
|
}
|
|
int i;
|
char c;
|
float *input = calloc(256, sizeof(float));
|
float sum = 0;
|
for(i = 0; i < size-1; ++i){
|
c = text[i];
|
input[(int)c] = 1;
|
float *out = network_predict(net, input);
|
input[(int)c] = 0;
|
sum += log(out[(int)text[i+1]]);
|
}
|
printf("Log Probability: %f\n", sum);
|
}
|
|
|
void run_char_rnn(int argc, char **argv)
|
{
|
if(argc < 4){
|
fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
|
return;
|
}
|
char *filename = find_char_arg(argc, argv, "-file", "data/shakespeare.txt");
|
char *seed = find_char_arg(argc, argv, "-seed", "\n");
|
int len = find_int_arg(argc, argv, "-len", 100);
|
float temp = find_float_arg(argc, argv, "-temp", 1);
|
int rseed = find_int_arg(argc, argv, "-srand", time(0));
|
|
char *cfg = argv[3];
|
char *weights = (argc > 4) ? argv[4] : 0;
|
if(0==strcmp(argv[2], "train")) train_char_rnn(cfg, weights, filename);
|
else if(0==strcmp(argv[2], "valid")) valid_char_rnn(cfg, weights, filename);
|
else if(0==strcmp(argv[2], "test")) test_char_rnn(cfg, weights, len, seed, temp, rseed);
|
}
|