#include "yolo_v2_class.hpp"
|
|
|
#include "network.h"
|
|
extern "C" {
|
#include "detection_layer.h"
|
#include "region_layer.h"
|
#include "cost_layer.h"
|
#include "utils.h"
|
#include "parser.h"
|
#include "box.h"
|
#include "image.h"
|
#include "demo.h"
|
|
#include "option_list.h"
|
|
}
|
//#include <sys/time.h>
|
|
#include <vector>
|
#include <iostream>
|
|
|
#define FRAMES 3
|
#define ROI_PER_DETECTOR 100
|
|
|
struct detector_gpu_t{
|
float **probs;
|
box *boxes;
|
network net;
|
//image det;
|
//image det_s;
|
image images[FRAMES];
|
float *avg;
|
float *predictions[FRAMES];
|
};
|
|
|
|
YOLODLL_API Detector::Detector(std::string cfg_filename, std::string weight_filename, int gpu_id)
|
{
|
int old_gpu_index;
|
cudaGetDevice(&old_gpu_index);
|
|
detector_gpu_ptr = std::make_shared<detector_gpu_t>();
|
|
detector_gpu_t &detector_gpu = *reinterpret_cast<detector_gpu_t *>(detector_gpu_ptr.get());
|
|
cudaSetDevice(gpu_id);
|
network &net = detector_gpu.net;
|
net.gpu_index = gpu_id;
|
//gpu_index = i;
|
|
char *cfgfile = const_cast<char *>(cfg_filename.data());
|
char *weightfile = const_cast<char *>(weight_filename.data());
|
|
net = parse_network_cfg(cfgfile);
|
if (weightfile) {
|
load_weights(&net, weightfile);
|
}
|
set_batch_network(&net, 1);
|
net.gpu_index = gpu_id;
|
|
layer l = net.layers[net.n - 1];
|
int j;
|
|
detector_gpu.avg = (float *)calloc(l.outputs, sizeof(float));
|
for (j = 0; j < FRAMES; ++j) detector_gpu.predictions[j] = (float *)calloc(l.outputs, sizeof(float));
|
for (j = 0; j < FRAMES; ++j) detector_gpu.images[j] = make_image(1, 1, 3);
|
|
detector_gpu.boxes = (box *)calloc(l.w*l.h*l.n, sizeof(box));
|
detector_gpu.probs = (float **)calloc(l.w*l.h*l.n, sizeof(float *));
|
for (j = 0; j < l.w*l.h*l.n; ++j) detector_gpu.probs[j] = (float *)calloc(l.classes, sizeof(float));
|
|
cudaSetDevice(old_gpu_index);
|
}
|
|
YOLODLL_API Detector::~Detector()
|
{
|
detector_gpu_t &detector_gpu = *reinterpret_cast<detector_gpu_t *>(detector_gpu_ptr.get());
|
layer l = detector_gpu.net.layers[detector_gpu.net.n - 1];
|
|
free(detector_gpu.boxes);
|
free(detector_gpu.avg);
|
free(detector_gpu.predictions);
|
for (int j = 0; j < l.w*l.h*l.n; ++j) free(detector_gpu.probs[j]);
|
free(detector_gpu.probs);
|
}
|
|
|
YOLODLL_API std::vector<bbox_t> Detector::detect(std::string image_filename, float thresh)
|
{
|
char *input = const_cast<char *>(image_filename.data());
|
image im = load_image_color(input, 0, 0);
|
|
image_t img;
|
img.c = im.c;
|
img.data = im.data;
|
img.h = im.h;
|
img.w = im.w;
|
|
return detect(img, thresh);
|
}
|
|
|
YOLODLL_API std::vector<bbox_t> Detector::detect(image_t img, float thresh)
|
{
|
|
detector_gpu_t &detector_gpu = *reinterpret_cast<detector_gpu_t *>(detector_gpu_ptr.get());
|
network &net = detector_gpu.net;
|
int old_gpu_index;
|
cudaGetDevice(&old_gpu_index);
|
cudaSetDevice(net.gpu_index);
|
//std::cout << "net.gpu_index = " << net.gpu_index << std::endl;
|
|
float nms = .4;
|
|
image im;
|
im.c = img.c;
|
im.data = img.data;
|
im.h = img.h;
|
im.w = img.w;
|
|
image sized = resize_image(im, net.w, net.h);
|
layer l = net.layers[net.n - 1];
|
|
//box *boxes = (box *)calloc(l.w*l.h*l.n, sizeof(box));
|
//float **probs = (float **)calloc(l.w*l.h*l.n, sizeof(float *));
|
// (int j = 0; j < l.w*l.h*l.n; ++j) probs[j] = (float *)calloc(l.classes, sizeof(float *));
|
|
float *X = sized.data;
|
|
network_predict(net, X);
|
|
get_region_boxes(l, 1, 1, thresh, detector_gpu.probs, detector_gpu.boxes, 0, 0);
|
if (nms) do_nms_sort(detector_gpu.boxes, detector_gpu.probs, l.w*l.h*l.n, l.classes, nms);
|
//draw_detections(im, l.w*l.h*l.n, thresh, boxes, probs, names, alphabet, l.classes);
|
|
std::vector<bbox_t> bbox_vec;
|
|
for (size_t i = 0; i < (l.w*l.h*l.n); ++i) {
|
box b = detector_gpu.boxes[i];
|
int const obj_id = max_index(detector_gpu.probs[i], l.classes);
|
float const prob = detector_gpu.probs[i][obj_id];
|
|
if (prob > thresh)
|
{
|
bbox_t bbox;
|
bbox.x = (b.x - b.w / 2.)*im.w;
|
bbox.y = (b.y - b.h / 2.)*im.h;
|
bbox.w = b.w*im.w;
|
bbox.h = b.h*im.h;
|
bbox.obj_id = obj_id;
|
bbox.prob = prob;
|
|
bbox_vec.push_back(bbox);
|
}
|
}
|
|
cudaSetDevice(old_gpu_index);
|
|
return bbox_vec;
|
}
|