from glob import glob
|
import matplotlib.pyplot as plt
|
import matplotlib.image as mpimage
|
import pickle
|
import math
|
import random
|
import os
|
import re
|
import cv2
|
import fetch_data
|
import sys
|
import numpy as np
|
import pandas as pd
|
|
# Referenced from geaxgx's playing-card-detection: https://github.com/geaxgx/playing-card-detection
|
class Backgrounds:
|
def __init__(self, images=None, dumps_dir='data/dtd/images'):
|
if images is not None:
|
self._images = images
|
else: # load from pickle
|
if not os.path.exists(dumps_dir):
|
print('Warning: directory for dump %s doesn\'t exist' % dumps_dir)
|
return
|
self._images = []
|
for dump_name in glob(dumps_dir + '/*.pck'):
|
with open(dump_name, 'rb') as dump:
|
print('Loading ' + dump_name)
|
images = pickle.load(dump)
|
self._images += images
|
if len(self._images) == 0:
|
self._images = load_dtd()
|
print('# of images loaded: %d' % len(self._images))
|
|
def get_random(self, display=False):
|
bg = self._images[random.randint(0, len(self._images) - 1)]
|
if display:
|
plt.show(bg)
|
return bg
|
|
|
def load_dtd(dtd_dir='data/dtd/images', dump_it=True, dump_batch_size=1000):
|
if not os.path.exists(dtd_dir):
|
print('Warning: directory for DTD 5s doesn\'t exist.' % dtd_dir)
|
print('You can download the dataset using this command:'
|
'!wget https://www.robots.ox.ac.uk/~vgg/data/dtd/download/dtd-r1.0.1.tar.gz')
|
return []
|
bg_images = []
|
# Search the directory for all images, and append them
|
for subdir in glob(dtd_dir + "/*"):
|
for f in glob(subdir + "/*.jpg"):
|
bg_images.append(mpimage.imread(f))
|
print("# of images loaded :", len(bg_images))
|
|
# Save them as a pickle if necessary
|
if dump_it:
|
for i in range(math.ceil(len(bg_images) / dump_batch_size)):
|
dump_name = '%s/dtd_dump_%d.pck' % (dtd_dir, i)
|
with open(dump_name, 'wb') as dump:
|
print('Dumping ' + dump_name)
|
pickle.dump(bg_images[i * dump_batch_size:(i + 1) * dump_batch_size], dump)
|
|
return bg_images
|
|
|
def apply_bounding_box(img, card_info, display=False):
|
# Mana symbol - They are located on the top right side of the card, next to the name.
|
# Their position is stationary, and is right-aligned.
|
has_mana_cost = isinstance(card_info['mana_cost'], str) # Cards with no mana cost will have nan
|
is_planeswalker = 'Planeswalker' in card_info['type_line']
|
if has_mana_cost:
|
mana_cost = re.findall('\{(.*?)\}', card_info['mana_cost'])
|
x2 = 683
|
y1 = 67
|
|
# Cards with specific type or from old sets have their symbol at a different position
|
if is_planeswalker:
|
y1 -= 17
|
if card_info['set'] in ['8ed', 'mrd', 'dst', '5dn']:
|
y1 -= 2
|
|
for i in reversed(range(len(mana_cost))):
|
# Hybrid mana symbol are larger than a normal symbol
|
is_hybrid = '/' in mana_cost[i]
|
if is_hybrid:
|
box = [(x2 - 47, y1 - 8), (x2 + 2, y1 + 43)] # (x1, y1), (x2, y2)
|
x2 -= 45
|
else:
|
box = [(x2 - 39, y1), (x2, y1 + 41)] # (x1, y1), (x2, y2)
|
x2 -= 37
|
img_symbol = img[box[0][1]:box[1][1], box[0][0]:box[1][0]]
|
if display:
|
cv2.imshow('symbol', img_symbol)
|
cv2.waitKey(0)
|
|
|
def main():
|
#bg_images = load_dtd()
|
#bg = Backgrounds()
|
#bg.get_random(display=True)
|
df = fetch_data.load_all_cards_text('data/csv/dgm.csv')
|
#repeat = 'y'
|
while True:
|
card_info = df.iloc[random.randint(0, df.shape[0] - 1)]
|
print(card_info['name'])
|
card_img = cv2.imread('data/png/%s/%s_%s.png' % (card_info['set'], card_info['collector_number'],
|
fetch_data.get_valid_filename(card_info['name'])))
|
if card_img is None:
|
fetch_data.fetch_card_image(card_info)
|
card_img = cv2.imread('data/png/%s/%s_%s.png' % (card_info['set'], card_info['collector_number'],
|
fetch_data.get_valid_filename(card_info['name'])))
|
sys.stdout.flush()
|
apply_bounding_box(card_img, card_info, display=True)
|
#repeat = input('y to repeat, n to finish')
|
return
|
|
|
if __name__ == '__main__':
|
main()
|