Joseph Redmon
2015-03-27 d7d7da2653ff4f79a275529b0ac3fec438880083
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
#include "network.h"
#include "utils.h"
#include "parser.h"
 
 
char *class_names[] = {"bg", "aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"};
#define AMNT 3
void draw_detection(image im, float *box, int side)
{
    int classes = 21;
    int elems = 4+classes;
    int j;
    int r, c;
 
    for(r = 0; r < side; ++r){
        for(c = 0; c < side; ++c){
            j = (r*side + c) * elems;
            //printf("%d\n", j);
            //printf("Prob: %f\n", box[j]);
            int class = max_index(box+j, classes);
            if(box[j+class] > .02 || 1){
                //int z;
                //for(z = 0; z < classes; ++z) printf("%f %s\n", box[j+z], class_names[z]);
                printf("%f %s\n", box[j+class], class_names[class]);
                float red = get_color(0,class,classes);
                float green = get_color(1,class,classes);
                float blue = get_color(2,class,classes);
 
                j += classes;
                int d = im.w/side;
                int y = r*d+box[j]*d;
                int x = c*d+box[j+1]*d;
                int h = box[j+2]*im.h;
                int w = box[j+3]*im.w;
                draw_box(im, x-w/2, y-h/2, x+w/2, y+h/2,red,green,blue);
            }
        }
    }
    //printf("Done\n");
    show_image(im, "box");
    cvWaitKey(0);
}
 
void train_detection(char *cfgfile, char *weightfile)
{
    char *base = basecfg(cfgfile);
    printf("%s\n", base);
    float avg_loss = -1;
    network net = parse_network_cfg(cfgfile);
    if(weightfile){
        load_weights(&net, weightfile);
    }
    //net.seen = 0;
    printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
    int imgs = 128;
    srand(time(0));
    //srand(23410);
    int i = net.seen/imgs;
    list *plist = get_paths("/home/pjreddie/data/voc/train.txt");
    char **paths = (char **)list_to_array(plist);
    printf("%d\n", plist->size);
    data train, buffer;
    int im_dim = 512;
    int jitter = 64;
    int classes = 20;
    int background = 1;
    pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, im_dim, im_dim, 7, 7, jitter, background, &buffer);
    clock_t time;
    while(1){
        i += 1;
        time=clock();
        pthread_join(load_thread, 0);
        train = buffer;
        load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, im_dim, im_dim, 7, 7, jitter, background, &buffer);
 
/*
           image im = float_to_image(im_dim - jitter, im_dim-jitter, 3, train.X.vals[114]);
           draw_detection(im, train.y.vals[114], 7);
           show_image(im, "truth");
           cvWaitKey(0);
*/
 
        printf("Loaded: %lf seconds\n", sec(clock()-time));
        time=clock();
        float loss = train_network(net, train);
        net.seen += imgs;
        if (avg_loss < 0) avg_loss = loss;
        avg_loss = avg_loss*.9 + loss*.1;
        printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs);
        if(i%100==0){
            char buff[256];
            sprintf(buff, "/home/pjreddie/imagenet_backup/%s_%d.weights",base, i);
            save_weights(net, buff);
        }
        free_data(train);
    }
}
 
void validate_detection(char *cfgfile, char *weightfile)
{
    network net = parse_network_cfg(cfgfile);
    if(weightfile){
        load_weights(&net, weightfile);
    }
    fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
    srand(time(0));
 
    list *plist = get_paths("/home/pjreddie/data/voc/val.txt");
    //list *plist = get_paths("/home/pjreddie/data/voc/train.txt");
    char **paths = (char **)list_to_array(plist);
    int im_size = 448;
    int classes = 20;
    int background = 0;
    int nuisance = 1;
    int num_output = 7*7*(4+classes+background+nuisance);
 
    int m = plist->size;
    int i = 0;
    int splits = 100;
    int num = (i+1)*m/splits - i*m/splits;
 
    fprintf(stderr, "%d\n", m);
    data val, buffer;
    pthread_t load_thread = load_data_thread(paths, num, 0, 0, num_output, im_size, im_size, &buffer);
    clock_t time;
    for(i = 1; i <= splits; ++i){
        time=clock();
        pthread_join(load_thread, 0);
        val = buffer;
 
        num = (i+1)*m/splits - i*m/splits;
        char **part = paths+(i*m/splits);
        if(i != splits) load_thread = load_data_thread(part, num, 0, 0, num_output, im_size, im_size, &buffer);
 
        fprintf(stderr, "%d: Loaded: %lf seconds\n", i, sec(clock()-time));
        matrix pred = network_predict_data(net, val);
        int j, k, class;
        for(j = 0; j < pred.rows; ++j){
            for(k = 0; k < pred.cols; k += classes+4+background+nuisance){
                float scale = 1.;
                if(nuisance) scale = 1.-pred.vals[j][k];
                for(class = 0; class < classes; ++class){
                    int index = (k)/(classes+4+background+nuisance); 
                    int r = index/7;
                    int c = index%7;
                    int ci = k+classes+background+nuisance;
                    float y = (r + pred.vals[j][ci + 0])/7.;
                    float x = (c + pred.vals[j][ci + 1])/7.;
                    float h = pred.vals[j][ci + 2];
                    float w = pred.vals[j][ci + 3];
                    printf("%d %d %f %f %f %f %f\n", (i-1)*m/splits + j, class, scale*pred.vals[j][k+class+background+nuisance], y, x, h, w);
                }
            }
        }
 
        time=clock();
        free_data(val);
    }
}
 
void test_detection(char *cfgfile, char *weightfile)
{
    network net = parse_network_cfg(cfgfile);
    if(weightfile){
        load_weights(&net, weightfile);
    }
    int im_size = 448;
    set_batch_network(&net, 1);
    srand(2222222);
    clock_t time;
    char filename[256];
    while(1){
        fgets(filename, 256, stdin);
        strtok(filename, "\n");
        image im = load_image_color(filename, im_size, im_size);
        translate_image(im, -128);
        scale_image(im, 1/128.);
        printf("%d %d %d\n", im.h, im.w, im.c);
        float *X = im.data;
        time=clock();
        float *predictions = network_predict(net, X);
        printf("%s: Predicted in %f seconds.\n", filename, sec(clock()-time));
        draw_detection(im, predictions, 7);
        free_image(im);
    }
}
 
void run_detection(int argc, char **argv)
{
    if(argc < 4){
        fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
        return;
    }
 
    char *cfg = argv[3];
    char *weights = (argc > 4) ? argv[4] : 0;
    if(0==strcmp(argv[2], "test")) test_detection(cfg, weights);
    else if(0==strcmp(argv[2], "train")) train_detection(cfg, weights);
    else if(0==strcmp(argv[2], "valid")) validate_detection(cfg, weights);
}