extern "C" {
|
#include "crop_layer.h"
|
#include "utils.h"
|
#include "cuda.h"
|
#include "image.h"
|
}
|
|
#define BLOCK 256
|
|
__device__ float get_pixel_kernel(float *image, int w, int h, int x, int y, int c)
|
{
|
if(x < 0 || x >= w || y < 0 || y >= h) return 0;
|
return image[x + w*(y + c*h)];
|
}
|
|
__device__ float3 rgb_to_hsv_kernel(float3 rgb)
|
{
|
float r = rgb.x;
|
float g = rgb.y;
|
float b = rgb.z;
|
|
float h, s, v;
|
float max = (r > g) ? ( (r > b) ? r : b) : ( (g > b) ? g : b);
|
float min = (r < g) ? ( (r < b) ? r : b) : ( (g < b) ? g : b);
|
float delta = max - min;
|
v = max;
|
if(max == 0){
|
s = 0;
|
h = -1;
|
}else{
|
s = delta/max;
|
if(r == max){
|
h = (g - b) / delta;
|
} else if (g == max) {
|
h = 2 + (b - r) / delta;
|
} else {
|
h = 4 + (r - g) / delta;
|
}
|
if (h < 0) h += 6;
|
}
|
return make_float3(h, s, v);
|
}
|
|
__device__ float3 hsv_to_rgb_kernel(float3 hsv)
|
{
|
float h = hsv.x;
|
float s = hsv.y;
|
float v = hsv.z;
|
|
float r, g, b;
|
float f, p, q, t;
|
|
if (s == 0) {
|
r = g = b = v;
|
} else {
|
int index = (int) floorf(h);
|
f = h - index;
|
p = v*(1-s);
|
q = v*(1-s*f);
|
t = v*(1-s*(1-f));
|
if(index == 0){
|
r = v; g = t; b = p;
|
} else if(index == 1){
|
r = q; g = v; b = p;
|
} else if(index == 2){
|
r = p; g = v; b = t;
|
} else if(index == 3){
|
r = p; g = q; b = v;
|
} else if(index == 4){
|
r = t; g = p; b = v;
|
} else {
|
r = v; g = p; b = q;
|
}
|
}
|
r = (r < 0) ? 0 : ((r > 1) ? 1 : r);
|
g = (g < 0) ? 0 : ((g > 1) ? 1 : g);
|
b = (b < 0) ? 0 : ((b > 1) ? 1 : b);
|
return make_float3(r, g, b);
|
}
|
|
__device__ float billinear_interpolate_kernel(float *image, int w, int h, float x, float y, int c)
|
{
|
int ix = (int) floorf(x);
|
int iy = (int) floorf(y);
|
|
float dx = x - ix;
|
float dy = y - iy;
|
|
float val = (1-dy) * (1-dx) * get_pixel_kernel(image, w, h, ix, iy, c) +
|
dy * (1-dx) * get_pixel_kernel(image, w, h, ix, iy+1, c) +
|
(1-dy) * dx * get_pixel_kernel(image, w, h, ix+1, iy, c) +
|
dy * dx * get_pixel_kernel(image, w, h, ix+1, iy+1, c);
|
return val;
|
}
|
|
__global__ void levels_image_kernel(float *image, int batch, int w, int h, float saturation, float exposure, float translate, float scale)
|
{
|
int size = batch * w * h;
|
int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
|
if(id >= size) return;
|
int x = id % w;
|
id /= w;
|
int y = id % h;
|
id /= h;
|
size_t offset = id * h * w * 3;
|
image += offset;
|
float r = image[x + w*(y + h*2)];
|
float g = image[x + w*(y + h*1)];
|
float b = image[x + w*(y + h*0)];
|
float3 rgb = make_float3(r,g,b);
|
float3 hsv = rgb_to_hsv_kernel(rgb);
|
hsv.y *= saturation;
|
hsv.z *= exposure;
|
rgb = hsv_to_rgb_kernel(hsv);
|
image[x + w*(y + h*2)] = rgb.x*scale + translate;
|
image[x + w*(y + h*1)] = rgb.y*scale + translate;
|
image[x + w*(y + h*0)] = rgb.z*scale + translate;
|
}
|
|
__global__ void forward_crop_layer_kernel(float *input, int size, int c, int h, int w, int crop_height, int crop_width, int dh, int dw, int flip, float angle, float *output)
|
{
|
int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x;
|
if(id >= size) return;
|
|
float cx = w/2.;
|
float cy = h/2.;
|
|
int count = id;
|
int j = id % crop_width;
|
id /= crop_width;
|
int i = id % crop_height;
|
id /= crop_height;
|
int k = id % c;
|
id /= c;
|
int b = id;
|
|
input += w*h*c*b;
|
|
int x = (flip) ? w - dw - j - 1 : j + dw;
|
int y = i + dh;
|
|
float rx = cos(angle)*(x-cx) - sin(angle)*(y-cy) + cx;
|
float ry = sin(angle)*(x-cx) + cos(angle)*(y-cy) + cy;
|
|
output[count] = billinear_interpolate_kernel(input, w, h, rx, ry, k);
|
}
|
|
extern "C" void forward_crop_layer_gpu(crop_layer layer, network_state state)
|
{
|
int flip = (layer.flip && rand()%2);
|
int dh = rand()%(layer.h - layer.crop_height + 1);
|
int dw = rand()%(layer.w - layer.crop_width + 1);
|
float radians = layer.angle*3.14159/180.;
|
float angle = 2*radians*rand_uniform() - radians;
|
|
float saturation = rand_uniform() + 1;
|
if(rand_uniform() > .5) saturation = 1./saturation;
|
float exposure = rand_uniform() + 1;
|
if(rand_uniform() > .5) exposure = 1./exposure;
|
|
float scale = 2;
|
float translate = -1;
|
|
if(!state.train){
|
angle = 0;
|
flip = 0;
|
dh = (layer.h - layer.crop_height)/2;
|
dw = (layer.w - layer.crop_width)/2;
|
saturation = 1;
|
exposure = 1;
|
}
|
|
int size = layer.batch * layer.w * layer.h;
|
|
levels_image_kernel<<<cuda_gridsize(size), BLOCK>>>(state.input, layer.batch, layer.w, layer.h, saturation, exposure, translate, scale);
|
check_error(cudaPeekAtLastError());
|
|
size = layer.batch*layer.c*layer.crop_width*layer.crop_height;
|
|
forward_crop_layer_kernel<<<cuda_gridsize(size), BLOCK>>>(state.input, size, layer.c, layer.h, layer.w,
|
layer.crop_height, layer.crop_width, dh, dw, flip, angle, layer.output_gpu);
|
check_error(cudaPeekAtLastError());
|
|
/*
|
cuda_pull_array(layer.output_gpu, layer.output, size);
|
image im = float_to_image(layer.crop_width, layer.crop_height, layer.c, layer.output + 0*(size/layer.batch));
|
image im2 = float_to_image(layer.crop_width, layer.crop_height, layer.c, layer.output + 1*(size/layer.batch));
|
image im3 = float_to_image(layer.crop_width, layer.crop_height, layer.c, layer.output + 2*(size/layer.batch));
|
show_image(im, "cropped");
|
show_image(im2, "cropped2");
|
show_image(im3, "cropped3");
|
cvWaitKey(0);
|
*/
|
}
|