from glob import glob
|
import matplotlib.pyplot as plt
|
import matplotlib.image as mpimage
|
import pickle
|
import math
|
import random
|
import os
|
import re
|
import cv2
|
import fetch_data
|
import sys
|
import numpy as np
|
import pandas as pd
|
from transform_data import ExtractedObject
|
|
# Referenced from geaxgx's playing-card-detection: https://github.com/geaxgx/playing-card-detection
|
class Backgrounds:
|
def __init__(self, images=None, dumps_dir='data/dtd/images'):
|
if images is not None:
|
self._images = images
|
else: # load from pickle
|
if not os.path.exists(dumps_dir):
|
print('Warning: directory for dump %s doesn\'t exist' % dumps_dir)
|
return
|
self._images = []
|
for dump_name in glob(dumps_dir + '/*.pck'):
|
with open(dump_name, 'rb') as dump:
|
print('Loading ' + dump_name)
|
images = pickle.load(dump)
|
self._images += images
|
if len(self._images) == 0:
|
self._images = load_dtd()
|
print('# of images loaded: %d' % len(self._images))
|
|
def get_random(self, display=False):
|
bg = self._images[random.randint(0, len(self._images) - 1)]
|
if display:
|
plt.show(bg)
|
return bg
|
|
|
def load_dtd(dtd_dir='data/dtd/images', dump_it=True, dump_batch_size=1000):
|
if not os.path.exists(dtd_dir):
|
print('Warning: directory for DTD 5s doesn\'t exist.' % dtd_dir)
|
print('You can download the dataset using this command:'
|
'!wget https://www.robots.ox.ac.uk/~vgg/data/dtd/download/dtd-r1.0.1.tar.gz')
|
return []
|
bg_images = []
|
# Search the directory for all images, and append them
|
for subdir in glob(dtd_dir + "/*"):
|
for f in glob(subdir + "/*.jpg"):
|
bg_images.append(mpimage.imread(f))
|
print("# of images loaded :", len(bg_images))
|
|
# Save them as a pickle if necessary
|
if dump_it:
|
for i in range(math.ceil(len(bg_images) / dump_batch_size)):
|
dump_name = '%s/dtd_dump_%d.pck' % (dtd_dir, i)
|
with open(dump_name, 'wb') as dump:
|
print('Dumping ' + dump_name)
|
pickle.dump(bg_images[i * dump_batch_size:(i + 1) * dump_batch_size], dump)
|
|
return bg_images
|
|
|
def apply_bounding_box(img, card_info, display=False):
|
# List of detected objects to be fed into the neural net
|
# The first object is the entire card
|
detected_object_list = [ExtractedObject('card', [(0, 0), (len(img[0]), 0), (len(img[0]), len(img)), (0, len(img))])]
|
# Mana symbol - They are located on the top right side of the card, next to the name
|
# Their position is stationary, and is right-aligned.
|
has_mana_cost = isinstance(card_info['mana_cost'], str) # Cards with no mana cost will have nan
|
if has_mana_cost:
|
mana_cost = re.findall('\{(.*?)\}', card_info['mana_cost'])
|
x_anchor = 683
|
y_anchor = 65
|
|
# Cards with specific type or from old sets have their symbol at a different position
|
if card_info['set'] in ['8ed', 'mrd', 'dst', '5dn']:
|
y_anchor -= 2
|
|
for i in reversed(range(len(mana_cost))):
|
# Hybrid mana symbol are larger than a normal symbol
|
is_hybrid = '/' in mana_cost[i]
|
if is_hybrid:
|
x1 = x_anchor - 47
|
x2 = x_anchor + 2
|
y1 = y_anchor - 8
|
y2 = y_anchor + 43
|
x_anchor -= 45
|
else:
|
x1 = x_anchor - 39
|
x2 = x_anchor
|
y1 = y_anchor
|
y2 = y_anchor + 43
|
x_anchor -= 37
|
# Append them to the list of bounding box with the appropriate label
|
symbol_name = 'mana_symbol:' + mana_cost[i]
|
key_pts = [(x1, y1), (x2, y1), (x2, y2), (x1, y2)]
|
detected_object_list.append(ExtractedObject(symbol_name, key_pts))
|
|
if display:
|
img_symbol = img[y1:y2, x1:x2]
|
cv2.imshow('symbol', img_symbol)
|
cv2.waitKey(0)
|
|
# Set symbol - located on the right side of the type box in the centre of the card, next to the card type
|
# Only one symbol exists, and its colour varies by rarity.
|
if card_info['set'] in ['8ed']:
|
x1 = 622
|
x2 = 670
|
elif card_info['set'] in ['mrd', 'm10', 'm11', 'm12', 'm13', 'm14']:
|
x1 = 602
|
x2 = 684
|
elif card_info['set'] in ['dst']:
|
x1 = 636
|
x2 = 673
|
elif card_info['set'] in ['5dn']:
|
x1 = 630
|
x2 = 675
|
elif card_info['set'] in ['bok', 'rtr']:
|
x1 = 633
|
x2 = 683
|
elif card_info['set'] in ['sok', 'mbs']:
|
x1 = 638
|
x2 = 683
|
elif card_info['set'] in ['rav']:
|
x1 = 640
|
x2 = 678
|
elif card_info['set'] in ['csp']:
|
x1 = 650
|
x2 = 683
|
elif card_info['set'] in ['tsp', 'lrw', 'zen', 'wwk', 'ths']:
|
x1 = 640
|
x2 = 683
|
elif card_info['set'] in ['plc', 'fut', 'shm', 'eve']:
|
x1 = 625
|
x2 = 685
|
elif card_info['set'] in ['10e']:
|
x1 = 623
|
x2 = 680
|
elif card_info['set'] in ['mor', 'roe', 'bng']:
|
x1 = 637
|
x2 = 687
|
elif card_info['set'] in ['ala', 'arb']:
|
x1 = 635
|
x2 = 680
|
elif card_info['set'] in ['nph']:
|
x1 = 642
|
x2 = 678
|
elif card_info['set'] in ['gtc']:
|
x1 = 610
|
x2 = 683
|
elif card_info['set'] in ['dgm']:
|
x1 = 618
|
x2 = 678
|
else:
|
x1 = 630
|
x2 = 683
|
y1 = 589
|
y2 = 636
|
# Append them to the list of bounding box with the appropriate label
|
symbol_name = 'set_symbol:' + card_info['set']
|
key_pts = [(x1, y1), (x2, y1), (x2, y2), (x1, y2)]
|
detected_object_list.append(ExtractedObject(symbol_name, key_pts))
|
|
if display:
|
img_symbol = img[y1:y2, x1:x2]
|
cv2.imshow('symbol', img_symbol)
|
cv2.waitKey(0)
|
|
# Name box - The long bar on the top with card name and mana symbols
|
# TODO
|
|
# Type box - The long bar on the middle with card type and set symbols
|
# TODO
|
|
# Image box - the large image on the top half of the card
|
# TODO
|
return detected_object_list
|
|
|
def main():
|
random.seed()
|
#bg_images = load_dtd()
|
#bg = Backgrounds()
|
#bg.get_random(display=True)
|
|
card_pool = pd.DataFrame()
|
for set_name in fetch_data.all_set_list:
|
df = fetch_data.load_all_cards_text('data/csv/%s.csv' % set_name)
|
for _ in range(3):
|
card_info = df.iloc[random.randint(0, df.shape[0] - 1)]
|
# Currently ignoring planeswalker cards due to their different card layout
|
is_planeswalker = 'Planeswalker' in card_info['type_line']
|
if not is_planeswalker:
|
card_pool = card_pool.append(card_info)
|
|
for _, card_info in card_pool.iterrows():
|
img_name = '../usb/data/png/%s/%s_%s.png' % (card_info['set'], card_info['collector_number'],
|
fetch_data.get_valid_filename(card_info['name']))
|
print(img_name)
|
card_img = cv2.imread(img_name)
|
if card_img is None:
|
fetch_data.fetch_card_image(card_info, out_dir='../usb/data/png/%s' % card_info['set'])
|
card_img = cv2.imread(img_name)
|
detected_object_list = apply_bounding_box(card_img, card_info, display=True)
|
print(detected_object_list)
|
return
|
|
|
if __name__ == '__main__':
|
main()
|