#include "detection_layer.h"
|
#include "activations.h"
|
#include "softmax_layer.h"
|
#include "blas.h"
|
#include "cuda.h"
|
#include <stdio.h>
|
#include <stdlib.h>
|
|
int get_detection_layer_locations(detection_layer layer)
|
{
|
return layer.inputs / (layer.classes+layer.coords+layer.rescore+layer.background);
|
}
|
|
int get_detection_layer_output_size(detection_layer layer)
|
{
|
return get_detection_layer_locations(layer)*(layer.background + layer.classes + layer.coords);
|
}
|
|
detection_layer *make_detection_layer(int batch, int inputs, int classes, int coords, int rescore, int background, int nuisance)
|
{
|
detection_layer *layer = calloc(1, sizeof(detection_layer));
|
|
layer->batch = batch;
|
layer->inputs = inputs;
|
layer->classes = classes;
|
layer->coords = coords;
|
layer->rescore = rescore;
|
layer->nuisance = nuisance;
|
layer->background = background;
|
int outputs = get_detection_layer_output_size(*layer);
|
layer->output = calloc(batch*outputs, sizeof(float));
|
layer->delta = calloc(batch*outputs, sizeof(float));
|
#ifdef GPU
|
layer->output_gpu = cuda_make_array(0, batch*outputs);
|
layer->delta_gpu = cuda_make_array(0, batch*outputs);
|
#endif
|
|
fprintf(stderr, "Detection Layer\n");
|
srand(0);
|
|
return layer;
|
}
|
|
void dark_zone(detection_layer layer, int class, int start, network_state state)
|
{
|
int index = start+layer.background+class;
|
int size = layer.classes+layer.coords+layer.background;
|
int location = (index%(7*7*size)) / size ;
|
int r = location / 7;
|
int c = location % 7;
|
int dr, dc;
|
for(dr = -1; dr <= 1; ++dr){
|
for(dc = -1; dc <= 1; ++dc){
|
if(!(dr || dc)) continue;
|
if((r + dr) > 6 || (r + dr) < 0) continue;
|
if((c + dc) > 6 || (c + dc) < 0) continue;
|
int di = (dr*7 + dc) * size;
|
if(state.truth[index+di]) continue;
|
layer.output[index + di] = 0;
|
//if(!state.truth[start+di]) continue;
|
//layer.output[start + di] = 1;
|
}
|
}
|
}
|
|
void forward_detection_layer(const detection_layer layer, network_state state)
|
{
|
int in_i = 0;
|
int out_i = 0;
|
int locations = get_detection_layer_locations(layer);
|
int i,j;
|
for(i = 0; i < layer.batch*locations; ++i){
|
int mask = (!state.truth || state.truth[out_i + layer.background + layer.classes + 2]);
|
float scale = 1;
|
if(layer.rescore) scale = state.input[in_i++];
|
else if(layer.nuisance){
|
layer.output[out_i++] = 1-state.input[in_i++];
|
scale = mask;
|
}
|
else if(layer.background) layer.output[out_i++] = scale*state.input[in_i++];
|
|
for(j = 0; j < layer.classes; ++j){
|
layer.output[out_i++] = scale*state.input[in_i++];
|
}
|
if(layer.nuisance){
|
|
}else if(layer.background){
|
softmax_array(layer.output + out_i - layer.classes-layer.background, layer.classes+layer.background, layer.output + out_i - layer.classes-layer.background);
|
activate_array(state.input+in_i, layer.coords, LOGISTIC);
|
}
|
for(j = 0; j < layer.coords; ++j){
|
layer.output[out_i++] = mask*state.input[in_i++];
|
}
|
}
|
/*
|
if(layer.background || 1){
|
for(i = 0; i < layer.batch*locations; ++i){
|
int index = i*(layer.classes+layer.coords+layer.background);
|
for(j= 0; j < layer.classes; ++j){
|
if(state.truth[index+j+layer.background]){
|
//dark_zone(layer, j, index, state);
|
}
|
}
|
}
|
}
|
*/
|
}
|
|
void backward_detection_layer(const detection_layer layer, network_state state)
|
{
|
int locations = get_detection_layer_locations(layer);
|
int i,j;
|
int in_i = 0;
|
int out_i = 0;
|
for(i = 0; i < layer.batch*locations; ++i){
|
float scale = 1;
|
float latent_delta = 0;
|
if(layer.rescore) scale = state.input[in_i++];
|
else if (layer.nuisance) state.delta[in_i++] = -layer.delta[out_i++];
|
else if (layer.background) state.delta[in_i++] = scale*layer.delta[out_i++];
|
for(j = 0; j < layer.classes; ++j){
|
latent_delta += state.input[in_i]*layer.delta[out_i];
|
state.delta[in_i++] = scale*layer.delta[out_i++];
|
}
|
|
if (layer.nuisance) ;
|
else if (layer.background) gradient_array(layer.output + out_i, layer.coords, LOGISTIC, layer.delta + out_i);
|
for(j = 0; j < layer.coords; ++j){
|
state.delta[in_i++] = layer.delta[out_i++];
|
}
|
if(layer.rescore) state.delta[in_i-layer.coords-layer.classes-layer.rescore-layer.background] = latent_delta;
|
}
|
}
|
|
#ifdef GPU
|
|
void forward_detection_layer_gpu(const detection_layer layer, network_state state)
|
{
|
int outputs = get_detection_layer_output_size(layer);
|
float *in_cpu = calloc(layer.batch*layer.inputs, sizeof(float));
|
float *truth_cpu = 0;
|
if(state.truth){
|
truth_cpu = calloc(layer.batch*outputs, sizeof(float));
|
cuda_pull_array(state.truth, truth_cpu, layer.batch*outputs);
|
}
|
cuda_pull_array(state.input, in_cpu, layer.batch*layer.inputs);
|
network_state cpu_state;
|
cpu_state.train = state.train;
|
cpu_state.truth = truth_cpu;
|
cpu_state.input = in_cpu;
|
forward_detection_layer(layer, cpu_state);
|
cuda_push_array(layer.output_gpu, layer.output, layer.batch*outputs);
|
free(cpu_state.input);
|
if(cpu_state.truth) free(cpu_state.truth);
|
}
|
|
void backward_detection_layer_gpu(detection_layer layer, network_state state)
|
{
|
int outputs = get_detection_layer_output_size(layer);
|
|
float *in_cpu = calloc(layer.batch*layer.inputs, sizeof(float));
|
float *delta_cpu = calloc(layer.batch*layer.inputs, sizeof(float));
|
float *truth_cpu = 0;
|
if(state.truth){
|
truth_cpu = calloc(layer.batch*outputs, sizeof(float));
|
cuda_pull_array(state.truth, truth_cpu, layer.batch*outputs);
|
}
|
network_state cpu_state;
|
cpu_state.train = state.train;
|
cpu_state.input = in_cpu;
|
cpu_state.truth = truth_cpu;
|
cpu_state.delta = delta_cpu;
|
|
cuda_pull_array(state.input, in_cpu, layer.batch*layer.inputs);
|
cuda_pull_array(layer.delta_gpu, layer.delta, layer.batch*outputs);
|
backward_detection_layer(layer, cpu_state);
|
cuda_push_array(state.delta, delta_cpu, layer.batch*layer.inputs);
|
|
free(in_cpu);
|
free(delta_cpu);
|
}
|
#endif
|