Joseph Redmon
2015-08-11 eb98da5000f4d347ee8563467dffa4541e7faa7a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
#include <stdio.h>
#include <time.h>
#include "network.h"
#include "image.h"
#include "data.h"
#include "utils.h"
#include "blas.h"
 
#include "crop_layer.h"
#include "connected_layer.h"
#include "convolutional_layer.h"
#include "deconvolutional_layer.h"
#include "detection_layer.h"
#include "normalization_layer.h"
#include "maxpool_layer.h"
#include "avgpool_layer.h"
#include "cost_layer.h"
#include "softmax_layer.h"
#include "dropout_layer.h"
#include "route_layer.h"
 
char *get_layer_string(LAYER_TYPE a)
{
    switch(a){
        case CONVOLUTIONAL:
            return "convolutional";
        case DECONVOLUTIONAL:
            return "deconvolutional";
        case CONNECTED:
            return "connected";
        case MAXPOOL:
            return "maxpool";
        case AVGPOOL:
            return "avgpool";
        case SOFTMAX:
            return "softmax";
        case DETECTION:
            return "detection";
        case DROPOUT:
            return "dropout";
        case CROP:
            return "crop";
        case COST:
            return "cost";
        case ROUTE:
            return "route";
        case NORMALIZATION:
            return "normalization";
        default:
            break;
    }
    return "none";
}
 
network make_network(int n)
{
    network net = {0};
    net.n = n;
    net.layers = calloc(net.n, sizeof(layer));
    #ifdef GPU
    net.input_gpu = calloc(1, sizeof(float *));
    net.truth_gpu = calloc(1, sizeof(float *));
    #endif
    return net;
}
 
void forward_network(network net, network_state state)
{
    int i;
    for(i = 0; i < net.n; ++i){
        layer l = net.layers[i];
        if(l.delta){
            scal_cpu(l.outputs * l.batch, 0, l.delta, 1);
        }
        if(l.type == CONVOLUTIONAL){
            forward_convolutional_layer(l, state);
        } else if(l.type == DECONVOLUTIONAL){
            forward_deconvolutional_layer(l, state);
        } else if(l.type == NORMALIZATION){
            forward_normalization_layer(l, state);
        } else if(l.type == DETECTION){
            forward_detection_layer(l, state);
        } else if(l.type == CONNECTED){
            forward_connected_layer(l, state);
        } else if(l.type == CROP){
            forward_crop_layer(l, state);
        } else if(l.type == COST){
            forward_cost_layer(l, state);
        } else if(l.type == SOFTMAX){
            forward_softmax_layer(l, state);
        } else if(l.type == MAXPOOL){
            forward_maxpool_layer(l, state);
        } else if(l.type == AVGPOOL){
            forward_avgpool_layer(l, state);
        } else if(l.type == DROPOUT){
            forward_dropout_layer(l, state);
        } else if(l.type == ROUTE){
            forward_route_layer(l, net);
        }
        state.input = l.output;
    }
}
 
void update_network(network net)
{
    int i;
    int update_batch = net.batch*net.subdivisions;
    for(i = 0; i < net.n; ++i){
        layer l = net.layers[i];
        if(l.type == CONVOLUTIONAL){
            update_convolutional_layer(l, update_batch, net.learning_rate, net.momentum, net.decay);
        } else if(l.type == DECONVOLUTIONAL){
            update_deconvolutional_layer(l, net.learning_rate, net.momentum, net.decay);
        } else if(l.type == CONNECTED){
            update_connected_layer(l, update_batch, net.learning_rate, net.momentum, net.decay);
        }
    }
}
 
float *get_network_output(network net)
{
    int i;
    for(i = net.n-1; i > 0; --i) if(net.layers[i].type != COST) break;
    return net.layers[i].output;
}
 
float get_network_cost(network net)
{
    int i;
    float sum = 0;
    int count = 0;
    for(i = 0; i < net.n; ++i){
        if(net.layers[net.n-1].type == COST){
            sum += net.layers[net.n-1].output[0];
            ++count;
        }
        if(net.layers[net.n-1].type == DETECTION){
            sum += net.layers[net.n-1].cost[0];
            ++count;
        }
    }
    return sum/count;
}
 
int get_predicted_class_network(network net)
{
    float *out = get_network_output(net);
    int k = get_network_output_size(net);
    return max_index(out, k);
}
 
void backward_network(network net, network_state state)
{
    int i;
    float *original_input = state.input;
    float *original_delta = state.delta;
    for(i = net.n-1; i >= 0; --i){
        if(i == 0){
            state.input = original_input;
            state.delta = original_delta;
        }else{
            layer prev = net.layers[i-1];
            state.input = prev.output;
            state.delta = prev.delta;
        }
        layer l = net.layers[i];
        if(l.type == CONVOLUTIONAL){
            backward_convolutional_layer(l, state);
        } else if(l.type == DECONVOLUTIONAL){
            backward_deconvolutional_layer(l, state);
        } else if(l.type == NORMALIZATION){
            backward_normalization_layer(l, state);
        } else if(l.type == MAXPOOL){
            if(i != 0) backward_maxpool_layer(l, state);
        } else if(l.type == AVGPOOL){
            backward_avgpool_layer(l, state);
        } else if(l.type == DROPOUT){
            backward_dropout_layer(l, state);
        } else if(l.type == DETECTION){
            backward_detection_layer(l, state);
        } else if(l.type == SOFTMAX){
            if(i != 0) backward_softmax_layer(l, state);
        } else if(l.type == CONNECTED){
            backward_connected_layer(l, state);
        } else if(l.type == COST){
            backward_cost_layer(l, state);
        } else if(l.type == ROUTE){
            backward_route_layer(l, net);
        }
    }
}
 
float train_network_datum(network net, float *x, float *y)
{
#ifdef GPU
    if(gpu_index >= 0) return train_network_datum_gpu(net, x, y);
#endif
    network_state state;
    state.input = x;
    state.delta = 0;
    state.truth = y;
    state.train = 1;
    forward_network(net, state);
    backward_network(net, state);
    float error = get_network_cost(net);
    if((net.seen/net.batch)%net.subdivisions == 0) update_network(net);
    return error;
}
 
float train_network_sgd(network net, data d, int n)
{
    int batch = net.batch;
    float *X = calloc(batch*d.X.cols, sizeof(float));
    float *y = calloc(batch*d.y.cols, sizeof(float));
 
    int i;
    float sum = 0;
    for(i = 0; i < n; ++i){
        net.seen += batch;
        get_random_batch(d, batch, X, y);
        float err = train_network_datum(net, X, y);
        sum += err;
    }
    free(X);
    free(y);
    return (float)sum/(n*batch);
}
 
float train_network(network net, data d)
{
    int batch = net.batch;
    int n = d.X.rows / batch;
    float *X = calloc(batch*d.X.cols, sizeof(float));
    float *y = calloc(batch*d.y.cols, sizeof(float));
 
    int i;
    float sum = 0;
    for(i = 0; i < n; ++i){
        get_next_batch(d, batch, i*batch, X, y);
        net.seen += batch;
        float err = train_network_datum(net, X, y);
        sum += err;
    }
    free(X);
    free(y);
    return (float)sum/(n*batch);
}
 
float train_network_batch(network net, data d, int n)
{
    int i,j;
    network_state state;
    state.train = 1;
    state.delta = 0;
    float sum = 0;
    int batch = 2;
    for(i = 0; i < n; ++i){
        for(j = 0; j < batch; ++j){
            int index = rand()%d.X.rows;
            state.input = d.X.vals[index];
            state.truth = d.y.vals[index];
            forward_network(net, state);
            backward_network(net, state);
            sum += get_network_cost(net);
        }
        update_network(net);
    }
    return (float)sum/(n*batch);
}
 
void set_batch_network(network *net, int b)
{
    net->batch = b;
    int i;
    for(i = 0; i < net->n; ++i){
        net->layers[i].batch = b;
    }
}
 
int resize_network(network *net, int w, int h)
{
    int i;
    //if(w == net->w && h == net->h) return 0;
    net->w = w;
    net->h = h;
    //fprintf(stderr, "Resizing to %d x %d...", w, h);
    //fflush(stderr);
    for (i = 0; i < net->n; ++i){
        layer l = net->layers[i];
        if(l.type == CONVOLUTIONAL){
            resize_convolutional_layer(&l, w, h);
        }else if(l.type == MAXPOOL){
            resize_maxpool_layer(&l, w, h);
        }else if(l.type == AVGPOOL){
            resize_avgpool_layer(&l, w, h);
            break;
        }else if(l.type == NORMALIZATION){
            resize_normalization_layer(&l, w, h);
        }else{
            error("Cannot resize this type of layer");
        }
        net->layers[i] = l;
        w = l.out_w;
        h = l.out_h;
    }
    //fprintf(stderr, " Done!\n");
    return 0;
}
 
int get_network_output_size(network net)
{
    int i;
    for(i = net.n-1; i > 0; --i) if(net.layers[i].type != COST) break;
    return net.layers[i].outputs;
}
 
int get_network_input_size(network net)
{
    return net.layers[0].inputs;
}
 
detection_layer get_network_detection_layer(network net)
{
    int i;
    for(i = 0; i < net.n; ++i){
        if(net.layers[i].type == DETECTION){
            return net.layers[i];
        }
    }
    fprintf(stderr, "Detection layer not found!!\n");
    detection_layer l = {0};
    return l;
}
 
image get_network_image_layer(network net, int i)
{
    layer l = net.layers[i];
    if (l.out_w && l.out_h && l.out_c){
        return float_to_image(l.out_w, l.out_h, l.out_c, l.output);
    }
    image def = {0};
    return def;
}
 
image get_network_image(network net)
{
    int i;
    for(i = net.n-1; i >= 0; --i){
        image m = get_network_image_layer(net, i);
        if(m.h != 0) return m;
    }
    image def = {0};
    return def;
}
 
void visualize_network(network net)
{
    image *prev = 0;
    int i;
    char buff[256];
    for(i = 0; i < net.n; ++i){
        sprintf(buff, "Layer %d", i);
        layer l = net.layers[i];
        if(l.type == CONVOLUTIONAL){
            prev = visualize_convolutional_layer(l, buff, prev);
        }
    } 
}
 
void top_predictions(network net, int k, int *index)
{
    int size = get_network_output_size(net);
    float *out = get_network_output(net);
    top_k(out, size, k, index);
}
 
 
float *network_predict(network net, float *input)
{
#ifdef GPU
    if(gpu_index >= 0)  return network_predict_gpu(net, input);
#endif
 
    network_state state;
    state.input = input;
    state.truth = 0;
    state.train = 0;
    state.delta = 0;
    forward_network(net, state);
    float *out = get_network_output(net);
    return out;
}
 
matrix network_predict_data_multi(network net, data test, int n)
{
    int i,j,b,m;
    int k = get_network_output_size(net);
    matrix pred = make_matrix(test.X.rows, k);
    float *X = calloc(net.batch*test.X.rows, sizeof(float));
    for(i = 0; i < test.X.rows; i += net.batch){
        for(b = 0; b < net.batch; ++b){
            if(i+b == test.X.rows) break;
            memcpy(X+b*test.X.cols, test.X.vals[i+b], test.X.cols*sizeof(float));
        }
        for(m = 0; m < n; ++m){
            float *out = network_predict(net, X);
            for(b = 0; b < net.batch; ++b){
                if(i+b == test.X.rows) break;
                for(j = 0; j < k; ++j){
                    pred.vals[i+b][j] += out[j+b*k]/n;
                }
            }
        }
    }
    free(X);
    return pred;   
}
 
matrix network_predict_data(network net, data test)
{
    int i,j,b;
    int k = get_network_output_size(net);
    matrix pred = make_matrix(test.X.rows, k);
    float *X = calloc(net.batch*test.X.cols, sizeof(float));
    for(i = 0; i < test.X.rows; i += net.batch){
        for(b = 0; b < net.batch; ++b){
            if(i+b == test.X.rows) break;
            memcpy(X+b*test.X.cols, test.X.vals[i+b], test.X.cols*sizeof(float));
        }
        float *out = network_predict(net, X);
        for(b = 0; b < net.batch; ++b){
            if(i+b == test.X.rows) break;
            for(j = 0; j < k; ++j){
                pred.vals[i+b][j] = out[j+b*k];
            }
        }
    }
    free(X);
    return pred;   
}
 
void print_network(network net)
{
    int i,j;
    for(i = 0; i < net.n; ++i){
        layer l = net.layers[i];
        float *output = l.output;
        int n = l.outputs;
        float mean = mean_array(output, n);
        float vari = variance_array(output, n);
        fprintf(stderr, "Layer %d - Mean: %f, Variance: %f\n",i,mean, vari);
        if(n > 100) n = 100;
        for(j = 0; j < n; ++j) fprintf(stderr, "%f, ", output[j]);
        if(n == 100)fprintf(stderr,".....\n");
        fprintf(stderr, "\n");
    }
}
 
void compare_networks(network n1, network n2, data test)
{
    matrix g1 = network_predict_data(n1, test);
    matrix g2 = network_predict_data(n2, test);
    int i;
    int a,b,c,d;
    a = b = c = d = 0;
    for(i = 0; i < g1.rows; ++i){
        int truth = max_index(test.y.vals[i], test.y.cols);
        int p1 = max_index(g1.vals[i], g1.cols);
        int p2 = max_index(g2.vals[i], g2.cols);
        if(p1 == truth){
            if(p2 == truth) ++d;
            else ++c;
        }else{
            if(p2 == truth) ++b;
            else ++a;
        }
    }
    printf("%5d %5d\n%5d %5d\n", a, b, c, d);
    float num = pow((abs(b - c) - 1.), 2.);
    float den = b + c;
    printf("%f\n", num/den); 
}
 
float network_accuracy(network net, data d)
{
    matrix guess = network_predict_data(net, d);
    float acc = matrix_topk_accuracy(d.y, guess,1);
    free_matrix(guess);
    return acc;
}
 
float *network_accuracies(network net, data d)
{
    static float acc[2];
    matrix guess = network_predict_data(net, d);
    acc[0] = matrix_topk_accuracy(d.y, guess,1);
    acc[1] = matrix_topk_accuracy(d.y, guess,5);
    free_matrix(guess);
    return acc;
}
 
 
float network_accuracy_multi(network net, data d, int n)
{
    matrix guess = network_predict_data_multi(net, d, n);
    float acc = matrix_topk_accuracy(d.y, guess,1);
    free_matrix(guess);
    return acc;
}