Joseph Redmon
2014-12-28 f26da0ad5c679936274917c3d1e53821250414f6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
#include <stdio.h>
#include <time.h>
 
#include "network.h"
#include "image.h"
#include "data.h"
#include "utils.h"
 
#include "crop_layer.h"
#include "connected_layer.h"
#include "convolutional_layer.h"
#include "maxpool_layer.h"
#include "cost_layer.h"
#include "normalization_layer.h"
#include "freeweight_layer.h"
#include "softmax_layer.h"
#include "dropout_layer.h"
 
#ifdef GPU
cl_mem get_network_output_cl_layer(network net, int i);
cl_mem get_network_delta_cl_layer(network net, int i);
 
void forward_network_gpu(network net, cl_mem input, cl_mem truth, int train)
{
    int i;
    for(i = 0; i < net.n; ++i){
        if(net.types[i] == CONVOLUTIONAL){
            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
            forward_convolutional_layer_gpu(layer, input);
            input = layer.output_cl;
        }
        else if(net.types[i] == COST){
            cost_layer layer = *(cost_layer *)net.layers[i];
            forward_cost_layer_gpu(layer, input, truth);
        }
        else if(net.types[i] == CONNECTED){
            connected_layer layer = *(connected_layer *)net.layers[i];
            forward_connected_layer_gpu(layer, input);
            input = layer.output_cl;
        }
        else if(net.types[i] == MAXPOOL){
            maxpool_layer layer = *(maxpool_layer *)net.layers[i];
            forward_maxpool_layer_gpu(layer, input);
            input = layer.output_cl;
        }
        else if(net.types[i] == SOFTMAX){
            softmax_layer layer = *(softmax_layer *)net.layers[i];
            forward_softmax_layer_gpu(layer, input);
            input = layer.output_cl;
        }
        else if(net.types[i] == DROPOUT){
            if(!train) continue;
            dropout_layer layer = *(dropout_layer *)net.layers[i];
            forward_dropout_layer_gpu(layer, input);
            input = layer.output_cl;
        }
        else if(net.types[i] == CROP){
            crop_layer layer = *(crop_layer *)net.layers[i];
            forward_crop_layer_gpu(layer, input);
            input = layer.output_cl;
        }
    }
}
 
void backward_network_gpu(network net, cl_mem input)
{
    int i;
    cl_mem prev_input;
    cl_mem prev_delta;
    for(i = net.n-1; i >= 0; --i){
        if(i == 0){
            prev_input = input;
            prev_delta = 0;
        }else{
            prev_input = get_network_output_cl_layer(net, i-1);
            prev_delta = get_network_delta_cl_layer(net, i-1);
        }
        if(net.types[i] == CONVOLUTIONAL){
            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
            backward_convolutional_layer_gpu(layer, prev_input, prev_delta);
        }
        else if(net.types[i] == COST){
            cost_layer layer = *(cost_layer *)net.layers[i];
            backward_cost_layer_gpu(layer, prev_input, prev_delta);
        }
        else if(net.types[i] == CONNECTED){
            connected_layer layer = *(connected_layer *)net.layers[i];
            backward_connected_layer_gpu(layer, prev_input, prev_delta);
        }
        else if(net.types[i] == MAXPOOL){
            maxpool_layer layer = *(maxpool_layer *)net.layers[i];
            backward_maxpool_layer_gpu(layer, prev_delta);
        }
        else if(net.types[i] == DROPOUT){
            dropout_layer layer = *(dropout_layer *)net.layers[i];
            backward_dropout_layer_gpu(layer, prev_delta);
        }
        else if(net.types[i] == SOFTMAX){
            softmax_layer layer = *(softmax_layer *)net.layers[i];
            backward_softmax_layer_gpu(layer, prev_delta);
        }
    }
}
 
void update_network_gpu(network net)
{
    int i;
    for(i = 0; i < net.n; ++i){
        if(net.types[i] == CONVOLUTIONAL){
            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
            update_convolutional_layer_gpu(layer);
        }
        else if(net.types[i] == CONNECTED){
            connected_layer layer = *(connected_layer *)net.layers[i];
            update_connected_layer_gpu(layer);
        }
    }
}
 
cl_mem get_network_output_cl_layer(network net, int i)
{
    if(net.types[i] == CONVOLUTIONAL){
        convolutional_layer layer = *(convolutional_layer *)net.layers[i];
        return layer.output_cl;
    }
    else if(net.types[i] == CONNECTED){
        connected_layer layer = *(connected_layer *)net.layers[i];
        return layer.output_cl;
    }
    else if(net.types[i] == MAXPOOL){
        maxpool_layer layer = *(maxpool_layer *)net.layers[i];
        return layer.output_cl;
    }
    else if(net.types[i] == CROP){
        crop_layer layer = *(crop_layer *)net.layers[i];
        return layer.output_cl;
    }
    else if(net.types[i] == SOFTMAX){
        softmax_layer layer = *(softmax_layer *)net.layers[i];
        return layer.output_cl;
    } else if(net.types[i] == DROPOUT){
        dropout_layer layer = *(dropout_layer *)net.layers[i];
        return layer.output_cl;
    }
    return 0;
}
 
cl_mem get_network_delta_cl_layer(network net, int i)
{
    if(net.types[i] == CONVOLUTIONAL){
        convolutional_layer layer = *(convolutional_layer *)net.layers[i];
        return layer.delta_cl;
    }
    else if(net.types[i] == CONNECTED){
        connected_layer layer = *(connected_layer *)net.layers[i];
        return layer.delta_cl;
    }
    else if(net.types[i] == MAXPOOL){
        maxpool_layer layer = *(maxpool_layer *)net.layers[i];
        return layer.delta_cl;
    }
    else if(net.types[i] == SOFTMAX){
        softmax_layer layer = *(softmax_layer *)net.layers[i];
        return layer.delta_cl;
    } else if(net.types[i] == DROPOUT){
        if(i == 0) return 0;
        return get_network_delta_cl_layer(net, i-1);
    }
    return 0;
}
 
float train_network_datum_gpu(network net, float *x, float *y)
{
    int x_size = get_network_input_size(net)*net.batch;
    int y_size = get_network_output_size(net)*net.batch;
    if(!*net.input_cl){
        *net.input_cl = cl_make_array(x, x_size);
        *net.truth_cl = cl_make_array(y, y_size);
    }else{
        cl_write_array(*net.input_cl, x, x_size);
        cl_write_array(*net.truth_cl, y, y_size);
    }
    forward_network_gpu(net, *net.input_cl, *net.truth_cl, 1);
    backward_network_gpu(net, *net.input_cl);
    update_network_gpu(net);
    float error = get_network_cost(net);
    return error;
}
 
float *get_network_output_layer_gpu(network net, int i)
{
    if(net.types[i] == CONVOLUTIONAL){
        convolutional_layer layer = *(convolutional_layer *)net.layers[i];
        return layer.output;
    }
    else if(net.types[i] == CONNECTED){
        connected_layer layer = *(connected_layer *)net.layers[i];
        cl_read_array(layer.output_cl, layer.output, layer.outputs*layer.batch);
        return layer.output;
    }
    else if(net.types[i] == MAXPOOL){
        maxpool_layer layer = *(maxpool_layer *)net.layers[i];
        return layer.output;
    }
    else if(net.types[i] == SOFTMAX){
        softmax_layer layer = *(softmax_layer *)net.layers[i];
        pull_softmax_layer_output(layer);
        return layer.output;
    }
    return 0;
}
 
float *get_network_output_gpu(network net)
{
    int i;
    for(i = net.n-1; i > 0; --i) if(net.types[i] != COST) break;
    return get_network_output_layer_gpu(net, i);
}
 
float *network_predict_gpu(network net, float *input)
{
 
    int size = get_network_input_size(net) * net.batch;
    cl_mem input_cl = cl_make_array(input, size);
    forward_network_gpu(net, input_cl, 0, 0);
    float *out = get_network_output_gpu(net);
    clReleaseMemObject(input_cl);
    return out;
}
 
#endif