#include "network.h"
|
#include "detection_layer.h"
|
#include "cost_layer.h"
|
#include "utils.h"
|
#include "parser.h"
|
|
|
char *class_names[] = {"aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"};
|
|
void draw_detection(image im, float *box, int side, char *label)
|
{
|
int classes = 20;
|
int elems = 4+classes;
|
int j;
|
int r, c;
|
|
for(r = 0; r < side; ++r){
|
for(c = 0; c < side; ++c){
|
j = (r*side + c) * elems;
|
int class = max_index(box+j, classes);
|
if(box[j+class] > .2){
|
printf("%f %s\n", box[j+class], class_names[class]);
|
float red = get_color(0,class,classes);
|
float green = get_color(1,class,classes);
|
float blue = get_color(2,class,classes);
|
|
j += classes;
|
float x = box[j+0];
|
float y = box[j+1];
|
x = (x+c)/side;
|
y = (y+r)/side;
|
float w = box[j+2]; //*maxwidth;
|
float h = box[j+3]; //*maxheight;
|
h = h*h;
|
w = w*w;
|
|
int left = (x-w/2)*im.w;
|
int right = (x+w/2)*im.w;
|
int top = (y-h/2)*im.h;
|
int bot = (y+h/2)*im.h;
|
draw_box(im, left, top, right, bot, red, green, blue);
|
draw_box(im, left+1, top+1, right+1, bot+1, red, green, blue);
|
draw_box(im, left-1, top-1, right-1, bot-1, red, green, blue);
|
}
|
}
|
}
|
show_image(im, label);
|
}
|
|
void train_detection(char *cfgfile, char *weightfile)
|
{
|
srand(time(0));
|
data_seed = time(0);
|
int imgnet = 0;
|
char *base = basecfg(cfgfile);
|
printf("%s\n", base);
|
float avg_loss = -1;
|
network net = parse_network_cfg(cfgfile);
|
if(weightfile){
|
load_weights(&net, weightfile);
|
}
|
detection_layer layer = get_network_detection_layer(net);
|
printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
|
int imgs = 128;
|
int i = net.seen/imgs;
|
data train, buffer;
|
|
int classes = layer.classes;
|
int background = (layer.background || layer.objectness);
|
int side = sqrt(get_detection_layer_locations(layer));
|
|
char **paths;
|
list *plist;
|
if (imgnet){
|
plist = get_paths("/home/pjreddie/data/imagenet/det.train.list");
|
}else{
|
//plist = get_paths("/home/pjreddie/data/voc/no_2012_val.txt");
|
//plist = get_paths("/home/pjreddie/data/voc/no_2007_test.txt");
|
//plist = get_paths("/home/pjreddie/data/voc/val_2012.txt");
|
plist = get_paths("/home/pjreddie/data/voc/no_2007_test.txt");
|
//plist = get_paths("/home/pjreddie/data/coco/trainval.txt");
|
//plist = get_paths("/home/pjreddie/data/voc/all2007-2012.txt");
|
}
|
paths = (char **)list_to_array(plist);
|
pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, net.w, net.h, side, side, background, &buffer);
|
clock_t time;
|
while(1){
|
i += 1;
|
time=clock();
|
pthread_join(load_thread, 0);
|
train = buffer;
|
load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, net.w, net.h, side, side, background, &buffer);
|
|
/*
|
image im = float_to_image(net.w, net.h, 3, train.X.vals[114]);
|
image copy = copy_image(im);
|
draw_detection(copy, train.y.vals[114], 7, "truth");
|
cvWaitKey(0);
|
free_image(copy);
|
*/
|
|
printf("Loaded: %lf seconds\n", sec(clock()-time));
|
time=clock();
|
float loss = train_network(net, train);
|
net.seen += imgs;
|
if (avg_loss < 0) avg_loss = loss;
|
avg_loss = avg_loss*.9 + loss*.1;
|
printf("%d: %f, %f avg, %lf seconds, %d images\n", i, loss, avg_loss, sec(clock()-time), i*imgs);
|
if(i == 100){
|
net.learning_rate *= 10;
|
}
|
if(i%1000==0){
|
char buff[256];
|
sprintf(buff, "/home/pjreddie/imagenet_backup/%s_%d.weights",base, i);
|
save_weights(net, buff);
|
}
|
free_data(train);
|
}
|
}
|
|
void predict_detections(network net, data d, float threshold, int offset, int classes, int objectness, int background, int num_boxes, int per_box)
|
{
|
matrix pred = network_predict_data(net, d);
|
int j, k, class;
|
for(j = 0; j < pred.rows; ++j){
|
for(k = 0; k < pred.cols; k += per_box){
|
float scale = 1.;
|
int index = k/per_box;
|
int row = index / num_boxes;
|
int col = index % num_boxes;
|
if (objectness) scale = 1.-pred.vals[j][k];
|
for (class = 0; class < classes; ++class){
|
int ci = k+classes+(background || objectness);
|
float x = (pred.vals[j][ci + 0] + col)/num_boxes;
|
float y = (pred.vals[j][ci + 1] + row)/num_boxes;
|
float w = pred.vals[j][ci + 2]; // distance_from_edge(row, num_boxes);
|
float h = pred.vals[j][ci + 3]; // distance_from_edge(col, num_boxes);
|
w = pow(w, 2);
|
h = pow(h, 2);
|
float prob = scale*pred.vals[j][k+class+(background || objectness)];
|
if(prob < threshold) continue;
|
printf("%d %d %f %f %f %f %f\n", offset + j, class, prob, x, y, w, h);
|
}
|
}
|
}
|
free_matrix(pred);
|
}
|
|
void validate_detection(char *cfgfile, char *weightfile)
|
{
|
network net = parse_network_cfg(cfgfile);
|
if(weightfile){
|
load_weights(&net, weightfile);
|
}
|
detection_layer layer = get_network_detection_layer(net);
|
fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
|
srand(time(0));
|
|
list *plist = get_paths("/home/pjreddie/data/voc/test.txt");
|
char **paths = (char **)list_to_array(plist);
|
|
int classes = layer.classes;
|
int objectness = layer.objectness;
|
int background = layer.background;
|
int num_boxes = sqrt(get_detection_layer_locations(layer));
|
|
int per_box = 4+classes+(background || objectness);
|
int num_output = num_boxes*num_boxes*per_box;
|
|
int m = plist->size;
|
int i = 0;
|
int splits = 100;
|
|
int nthreads = 4;
|
int t;
|
data *val = calloc(nthreads, sizeof(data));
|
data *buf = calloc(nthreads, sizeof(data));
|
pthread_t *thr = calloc(nthreads, sizeof(data));
|
|
time_t start = time(0);
|
|
for(t = 0; t < nthreads; ++t){
|
int num = (i+1+t)*m/splits - (i+t)*m/splits;
|
char **part = paths+((i+t)*m/splits);
|
thr[t] = load_data_thread(part, num, 0, 0, num_output, net.w, net.h, &(buf[t]));
|
}
|
|
for(i = nthreads; i <= splits; i += nthreads){
|
for(t = 0; t < nthreads; ++t){
|
pthread_join(thr[t], 0);
|
val[t] = buf[t];
|
}
|
for(t = 0; t < nthreads && i < splits; ++t){
|
int num = (i+1+t)*m/splits - (i+t)*m/splits;
|
char **part = paths+((i+t)*m/splits);
|
thr[t] = load_data_thread(part, num, 0, 0, num_output, net.w, net.h, &(buf[t]));
|
}
|
|
fprintf(stderr, "%d\n", i);
|
for(t = 0; t < nthreads; ++t){
|
predict_detections(net, val[t], .001, (i-nthreads+t)*m/splits, classes, objectness, background, num_boxes, per_box);
|
free_data(val[t]);
|
}
|
}
|
fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start));
|
}
|
|
void test_detection(char *cfgfile, char *weightfile)
|
{
|
network net = parse_network_cfg(cfgfile);
|
if(weightfile){
|
load_weights(&net, weightfile);
|
}
|
detection_layer layer = get_network_detection_layer(net);
|
if (!layer.joint) fprintf(stderr, "Detection layer should use joint prediction to draw correctly.\n");
|
int im_size = 448;
|
set_batch_network(&net, 1);
|
srand(2222222);
|
clock_t time;
|
char filename[256];
|
while(1){
|
printf("Image Path: ");
|
fgets(filename, 256, stdin);
|
strtok(filename, "\n");
|
image im = load_image_color(filename,0,0);
|
image sized = resize_image(im, im_size, im_size);
|
float *X = sized.data;
|
time=clock();
|
float *predictions = network_predict(net, X);
|
printf("%s: Predicted in %f seconds.\n", filename, sec(clock()-time));
|
draw_detection(im, predictions, 7, "predictions");
|
free_image(im);
|
free_image(sized);
|
#ifdef OPENCV
|
cvWaitKey(0);
|
#endif
|
}
|
}
|
|
void run_detection(int argc, char **argv)
|
{
|
if(argc < 4){
|
fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
|
return;
|
}
|
|
char *cfg = argv[3];
|
char *weights = (argc > 4) ? argv[4] : 0;
|
if(0==strcmp(argv[2], "test")) test_detection(cfg, weights);
|
else if(0==strcmp(argv[2], "train")) train_detection(cfg, weights);
|
else if(0==strcmp(argv[2], "valid")) validate_detection(cfg, weights);
|
}
|