Joseph Redmon
2014-01-29 f7a17f82eb43de864a4f980f235055da9685eef8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
#include "connected_layer.h"
#include "utils.h"
#include "mini_blas.h"
 
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
 
connected_layer *make_connected_layer(int inputs, int outputs, ACTIVATION activation)
{
    fprintf(stderr, "Connected Layer: %d inputs, %d outputs\n", inputs, outputs);
    int i;
    connected_layer *layer = calloc(1, sizeof(connected_layer));
    layer->inputs = inputs;
    layer->outputs = outputs;
 
    layer->output = calloc(outputs, sizeof(float*));
    layer->delta = calloc(outputs, sizeof(float*));
 
    layer->weight_updates = calloc(inputs*outputs, sizeof(float));
    layer->weight_momentum = calloc(inputs*outputs, sizeof(float));
    layer->weights = calloc(inputs*outputs, sizeof(float));
    float scale = 2./inputs;
    for(i = 0; i < inputs*outputs; ++i)
        layer->weights[i] = rand_normal()*scale;
 
    layer->bias_updates = calloc(outputs, sizeof(float));
    layer->bias_momentum = calloc(outputs, sizeof(float));
    layer->biases = calloc(outputs, sizeof(float));
    for(i = 0; i < outputs; ++i)
        //layer->biases[i] = rand_normal()*scale + scale;
        layer->biases[i] = 0;
 
    layer->activation = activation;
    return layer;
}
 
void update_connected_layer(connected_layer layer, float step, float momentum, float decay)
{
    int i;
    for(i = 0; i < layer.outputs; ++i){
        layer.bias_momentum[i] = step*(layer.bias_updates[i]) + momentum*layer.bias_momentum[i];
        layer.biases[i] += layer.bias_momentum[i];
    }
    for(i = 0; i < layer.outputs*layer.inputs; ++i){
        layer.weight_momentum[i] = step*(layer.weight_updates[i] - decay*layer.weights[i]) + momentum*layer.weight_momentum[i];
        layer.weights[i] += layer.weight_momentum[i];
    }
    memset(layer.bias_updates, 0, layer.outputs*sizeof(float));
    memset(layer.weight_updates, 0, layer.outputs*layer.inputs*sizeof(float));
}
 
void forward_connected_layer(connected_layer layer, float *input)
{
    int i;
    memcpy(layer.output, layer.biases, layer.outputs*sizeof(float));
    int m = 1;
    int k = layer.inputs;
    int n = layer.outputs;
    float *a = input;
    float *b = layer.weights;
    float *c = layer.output;
    gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
    for(i = 0; i < layer.outputs; ++i){
        layer.output[i] = activate(layer.output[i], layer.activation);
    }
}
 
void learn_connected_layer(connected_layer layer, float *input)
{
    int i;
    for(i = 0; i < layer.outputs; ++i){
        layer.delta[i] *= gradient(layer.output[i], layer.activation);
        layer.bias_updates[i] += layer.delta[i];
    }
    int m = layer.inputs;
    int k = 1;
    int n = layer.outputs;
    float *a = input;
    float *b = layer.delta;
    float *c = layer.weight_updates;
    gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
}
 
void backward_connected_layer(connected_layer layer, float *input, float *delta)
{
    memset(delta, 0, layer.inputs*sizeof(float));
 
    int m = layer.inputs;
    int k = layer.outputs;
    int n = 1;
 
    float *a = layer.weights;
    float *b = layer.delta;
    float *c = delta;
 
    gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
}
/*
   void forward_connected_layer(connected_layer layer, float *input)
   {
   int i, j;
   for(i = 0; i < layer.outputs; ++i){
   layer.output[i] = layer.biases[i];
   for(j = 0; j < layer.inputs; ++j){
   layer.output[i] += input[j]*layer.weights[i*layer.inputs + j];
   }
   layer.output[i] = activate(layer.output[i], layer.activation);
   }
   }
   void learn_connected_layer(connected_layer layer, float *input)
   {
   int i, j;
   for(i = 0; i < layer.outputs; ++i){
   layer.delta[i] *= gradient(layer.output[i], layer.activation);
   layer.bias_updates[i] += layer.delta[i];
   for(j = 0; j < layer.inputs; ++j){
   layer.weight_updates[i*layer.inputs + j] += layer.delta[i]*input[j];
   }
   }
   }
   void backward_connected_layer(connected_layer layer, float *input, float *delta)
   {
   int i, j;
 
   for(j = 0; j < layer.inputs; ++j){
   delta[j] = 0;
   for(i = 0; i < layer.outputs; ++i){
   delta[j] += layer.delta[i]*layer.weights[i*layer.inputs + j];
   }
   }
   }
 */