import cv2
|
import numpy as np
|
import imagehash as ih
|
import os
|
import sys
|
import math
|
import random
|
from operator import itemgetter
|
|
card_width = 315
|
card_height = 440
|
|
|
# Disclaimer: majority of the basic framework in this file is modified from the following tutorial:
|
# https://www.learnopencv.com/deep-learning-based-object-detection-using-yolov3-with-opencv-python-c/
|
|
|
# www.pyimagesearch.com/2014/08/25/4-point-opencv-getperspective-transform-example/
|
def order_points(pts):
|
# initialzie a list of coordinates that will be ordered
|
# such that the first entry in the list is the top-left,
|
# the second entry is the top-right, the third is the
|
# bottom-right, and the fourth is the bottom-left
|
rect = np.zeros((4, 2), dtype="float32")
|
|
# the top-left point will have the smallest sum, whereas
|
# the bottom-right point will have the largest sum
|
s = pts.sum(axis=1)
|
rect[0] = pts[np.argmin(s)]
|
rect[2] = pts[np.argmax(s)]
|
|
# now, compute the difference between the points, the
|
# top-right point will have the smallest difference,
|
# whereas the bottom-left will have the largest difference
|
diff = np.diff(pts, axis=1)
|
rect[1] = pts[np.argmin(diff)]
|
rect[3] = pts[np.argmax(diff)]
|
|
# return the ordered coordinates
|
return rect
|
|
|
def four_point_transform(image, pts):
|
# obtain a consistent order of the points and unpack them
|
# individually
|
rect = order_points(pts)
|
(tl, tr, br, bl) = rect
|
|
# compute the width of the new image, which will be the
|
# maximum distance between bottom-right and bottom-left
|
# x-coordiates or the top-right and top-left x-coordinates
|
widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2))
|
widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2))
|
maxWidth = max(int(widthA), int(widthB))
|
|
# compute the height of the new image, which will be the
|
# maximum distance between the top-right and bottom-right
|
# y-coordinates or the top-left and bottom-left y-coordinates
|
heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2))
|
heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2))
|
maxHeight = max(int(heightA), int(heightB))
|
|
# now that we have the dimensions of the new image, construct
|
# the set of destination points to obtain a "birds eye view",
|
# (i.e. top-down view) of the image, again specifying points
|
# in the top-left, top-right, bottom-right, and bottom-left
|
# order
|
dst = np.array([
|
[0, 0],
|
[maxWidth - 1, 0],
|
[maxWidth - 1, maxHeight - 1],
|
[0, maxHeight - 1]], dtype="float32")
|
|
# compute the perspective transform matrix and then apply it
|
M = cv2.getPerspectiveTransform(rect, dst)
|
warped = cv2.warpPerspective(image, M, (maxWidth, maxHeight))
|
|
# If the image is horizontally long, rotate it by 90
|
if maxWidth > maxHeight:
|
center = (maxHeight / 2, maxHeight / 2)
|
M_rot = cv2.getRotationMatrix2D(center, 270, 1.0)
|
warped = cv2.warpAffine(warped, M_rot, (maxHeight, maxWidth))
|
|
# return the warped image
|
return warped
|
|
|
# Get the names of the output layers
|
def get_outputs_names(net):
|
# Get the names of all the layers in the network
|
layers_names = net.getLayerNames()
|
# Get the names of the output layers, i.e. the layers with unconnected outputs
|
return [layers_names[i[0] - 1] for i in net.getUnconnectedOutLayers()]
|
|
|
# Remove the bounding boxes with low confidence using non-maxima suppression
|
def post_process(frame, outs, thresh_conf, thresh_nms):
|
frame_height = frame.shape[0]
|
frame_width = frame.shape[1]
|
|
|
# Scan through all the bounding boxes output from the network and keep only the
|
# ones with high confidence scores. Assign the box's class label as the class with the highest score.
|
class_ids = []
|
confidences = []
|
boxes = []
|
for out in outs:
|
for detection in out:
|
scores = detection[5:]
|
class_id = np.argmax(scores)
|
confidence = scores[class_id]
|
if confidence > thresh_conf:
|
center_x = int(detection[0] * frame_width)
|
center_y = int(detection[1] * frame_height)
|
width = int(detection[2] * frame_width)
|
height = int(detection[3] * frame_height)
|
left = int(center_x - width / 2)
|
top = int(center_y - height / 2)
|
class_ids.append(class_id)
|
confidences.append(float(confidence))
|
boxes.append([left, top, width, height])
|
|
# Perform non maximum suppression to eliminate redundant overlapping boxes with lower confidences.
|
indices = [ind[0] for ind in cv2.dnn.NMSBoxes(boxes, confidences, thresh_conf, thresh_nms)]
|
|
ret = [[class_ids[i], confidences[i], boxes[i]] for i in indices]
|
return ret
|
|
|
# Draw the predicted bounding box
|
def draw_pred(frame, class_id, classes, conf, left, top, right, bottom):
|
# Draw a bounding box.
|
cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255))
|
|
label = '%.2f' % conf
|
|
# Get the label for the class name and its confidence
|
if classes:
|
assert (class_id < len(classes))
|
label = '%s:%s' % (classes[class_id], label)
|
|
# Display the label at the top of the bounding box
|
label_size, base_line = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
|
top = max(top, label_size[1])
|
cv2.putText(frame, label, (left, top), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255))
|
|
|
def remove_glare(img):
|
"""
|
Inspired from:
|
http://www.amphident.de/en/blog/preprocessing-for-automatic-pattern-identification-in-wildlife-removing-glare.html
|
The idea is to find area that has low saturation but high value, which is what a glare usually look like.
|
"""
|
img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
|
_, s, v = cv2.split(img_hsv)
|
non_sat = (s < 32) * 255 # Find all pixels that are not very saturated
|
|
# Slightly decrease the area of the non-satuared pixels by a erosion operation.
|
disk = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))
|
non_sat = cv2.erode(non_sat.astype(np.uint8), disk)
|
|
# Set all brightness values, where the pixels are still saturated to 0.
|
v[non_sat == 0] = 0
|
# filter out very bright pixels.
|
glare = (v > 200) * 255
|
|
# Slightly increase the area for each pixel
|
glare = cv2.dilate(glare.astype(np.uint8), disk)
|
glare_reduced = np.ones((img.shape[0], img.shape[1], 3), dtype=np.uint8) * 200
|
glare = cv2.cvtColor(glare, cv2.COLOR_GRAY2BGR)
|
corrected = np.where(glare, glare_reduced, img)
|
return corrected
|
|
|
def find_card(img, thresh_c=5, kernel_size=(3, 3), size_ratio=0.3):
|
# Typical pre-processing - grayscale, blurring, thresholding
|
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
img_blur = cv2.medianBlur(img_gray, 5)
|
img_thresh = cv2.adaptiveThreshold(img_blur, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 5, thresh_c)
|
|
# Dilute the image, then erode them to remove minor noises
|
kernel = np.ones(kernel_size, np.uint8)
|
img_dilate = cv2.dilate(img_thresh, kernel, iterations=1)
|
img_erode = cv2.erode(img_dilate, kernel, iterations=1)
|
|
# Find the contour
|
#img_contour = img_erode.copy()
|
_, cnts, hier = cv2.findContours(img_erode, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
if len(cnts) == 0:
|
print('no contours')
|
return []
|
#img_contour = cv2.cvtColor(img_contour, cv2.COLOR_GRAY2BGR)
|
|
# For each contours detected, check if they are large enough and are rectangle
|
cnts_rect = []
|
ind_sort = sorted(range(len(cnts)), key=lambda i: cv2.contourArea(cnts[i]), reverse=True)
|
for i in range(len(cnts)):
|
size = cv2.contourArea(cnts[ind_sort[i]])
|
peri = cv2.arcLength(cnts[ind_sort[i]], True)
|
approx = cv2.approxPolyDP(cnts[ind_sort[i]], 0.04 * peri, True)
|
if size > img.shape[0] * img.shape[1] * size_ratio and len(approx) == 4:
|
cnts_rect.append(approx)
|
|
return cnts_rect
|
|
'''
|
#card_dim = [630, 880]
|
#for cnt in cnts_rect:
|
# pts = np.float32([p[0] for p in cnt])
|
# img_warp = four_point_transform(img, pts)
|
|
# Check which side is longer
|
len_1 = math.sqrt((cnt[0][0][0] - cnt[1][0][0]) ** 2 + (cnt[0][0][1] - cnt[1][0][1]) ** 2)
|
len_2 = math.sqrt((cnt[0][0][0] - cnt[-1][0][0]) ** 2 + (cnt[0][0][1] - cnt[-1][0][1]) ** 2)
|
#print(len_1, len_2)
|
|
orig_corner = np.array([p[0] for p in cnt], dtype=np.float32)
|
if len_1 > len_2:
|
new_corner = np.array([[0, 0], [0, card_dim[1]], [card_dim[0], card_dim[1]], [card_dim[0], 0]], dtype=np.float32)
|
else:
|
new_corner = np.array([[0, 0], [card_dim[0], 0], [card_dim[0], card_dim[1]], [0, card_dim[1]]],
|
dtype=np.float32)
|
|
M = cv2.getPerspectiveTransform(orig_corner, new_corner)
|
img_warp = cv2.warpPerspective(img, M, (card_dim[0], card_dim[1]))
|
|
#cv2.imshow('warp', img_warp)
|
#cv2.waitKey(0)
|
#img_contour = cv2.drawContours(img_contour, cnts_rect, -1, (0, 255, 0), 3)
|
#img_thresh = cv2.cvtColor(img_thresh, cv2.COLOR_GRAY2BGR)
|
#img_erode = cv2.cvtColor(img_erode, cv2.COLOR_GRAY2BGR)
|
#img_dilate = cv2.cvtColor(img_dilate, cv2.COLOR_GRAY2BGR)
|
#return img_thresh, img_erode, img_contour
|
'''
|
|
def detect_frame(net, classes, img, thresh_conf=0.5, thresh_nms=0.4, in_dim=(416, 416), display=True, out_path=None):
|
img_copy = img.copy()
|
# Create a 4D blob from a frame.
|
blob = cv2.dnn.blobFromImage(img, 1 / 255, in_dim, [0, 0, 0], 1, crop=False)
|
|
# Sets the input to the network
|
net.setInput(blob)
|
|
# Runs the forward pass to get output of the output layers
|
outs = net.forward(get_outputs_names(net))
|
|
# Remove the bounding boxes with low confidence
|
obj_list = post_process(img, outs, thresh_conf, thresh_nms)
|
for obj in obj_list:
|
class_id, confidence, box = obj
|
left, top, width, height = box
|
draw_pred(img, class_id, classes, confidence, left, top, left + width, top + height)
|
|
# Put efficiency information. The function getPerfProfile returns the
|
# overall time for inference(t) and the timings for each of the layers(in layersTimes)
|
t, _ = net.getPerfProfile()
|
label = 'Inference time: %.2f ms' % (t * 1000.0 / cv2.getTickFrequency())
|
cv2.putText(img, label, (0, 15), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255))
|
|
if out_path is not None:
|
cv2.imwrite(out_path, img.astype(np.uint8))
|
if display:
|
#no_glare = remove_glare(img_copy)
|
#img_concat = np.concatenate((img, no_glare), axis=1)
|
cv2.imshow('result', img)
|
'''
|
for i in range(len(obj_list)):
|
class_id, confidence, box = obj_list[i]
|
left, top, width, height = box
|
img_snip = img_copy[max(0, top):min(img.shape[0], top + height),
|
max(0, left):min(img.shape[1], left + width)]
|
img_thresh, img_dilate, img_canny, img_hough = find_card(img_snip)
|
img_concat = np.concatenate((img_snip, img_thresh, img_dilate, img_canny, img_hough), axis=1)
|
cv2.imshow('feature#%d' % i, img_concat)
|
'''
|
cv2.waitKey(0)
|
cv2.destroyAllWindows()
|
|
return obj_list
|
|
|
def detect_video(net, classes, capture, thresh_conf=0.5, thresh_nms=0.4, in_dim=(416, 416), display=True, out_path=None):
|
if out_path is not None:
|
vid_writer = cv2.VideoWriter(out_path, cv2.VideoWriter_fourcc('M', 'J', 'P', 'G'), 30,
|
(round(capture.get(cv2.CAP_PROP_FRAME_WIDTH)),
|
round(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))))
|
max_num_obj = 0
|
while True:
|
ret, frame = capture.read()
|
if not ret:
|
# End of video
|
print("End of video. Press any key to exit")
|
cv2.waitKey(0)
|
break
|
img = frame.copy()
|
obj_list = detect_frame(net, classes, frame, thresh_conf=thresh_conf, thresh_nms=thresh_nms, in_dim=in_dim,
|
display=False, out_path=None)
|
#cnts_rect = find_card(img)
|
max_num_obj = max(max_num_obj, len(obj_list))
|
if display:
|
img_result = frame.copy()
|
#img_result = cv2.drawContours(img_result, cnts_rect, -1, (0, 255, 0), 2)
|
#for i in range(len(cnts_rect)):
|
# pts = np.float32([p[0] for p in cnts_rect[i]])
|
# img_warp = four_point_transform(img, pts)
|
# cv2.imshow('card#%d' % i, img_warp)
|
#for i in range(len(cnts_rect), max_num_obj):
|
# cv2.imshow('card#%d' % i, np.zeros((1, 1), dtype=np.uint8))
|
#no_glare = remove_glare(img)
|
#img_thresh, img_erode, img_contour = find_card(no_glare)
|
#img_concat = np.concatenate((no_glare, img_contour), axis=1)
|
|
for i in range(len(obj_list)):
|
class_id, confidence, box = obj_list[i]
|
left, top, width, height = box
|
offset_ratio = 0.1
|
x1 = max(0, int(left - offset_ratio * width))
|
x2 = min(img.shape[1], int(left + (1 + offset_ratio) * width))
|
y1 = max(0, int(top - offset_ratio * height))
|
y2 = min(img.shape[0], int(top + (1 + offset_ratio) * height))
|
img_snip = img[y1:y2, x1:x2]
|
cnts = find_card(img_snip)
|
if len(cnts) > 0:
|
cnt = cnts[-1]
|
pts = np.float32([p[0] for p in cnt])
|
img_warp = four_point_transform(img_snip, pts)
|
img_warp = cv2.resize(img_warp, (card_width, card_height))
|
#img_thresh, img_dilate, img_contour = find_card(img_snip)
|
#img_concat = np.concatenate((img_snip, img_contour), axis=1)
|
cv2.rectangle(img_warp, (22, 47), (294, 249), (0, 255, 0), 2)
|
cv2.imshow('card#%d' % i, img_warp)
|
else:
|
cv2.imshow('card#%d' % i, np.zeros((1, 1), dtype=np.uint8))
|
for i in range(len(obj_list), max_num_obj):
|
cv2.imshow('card#%d' % i, np.zeros((1, 1), dtype=np.uint8))
|
cv2.imshow('result', img_result)
|
#if len(obj_list) > 0:
|
# cv2.waitKey(0)
|
|
|
if out_path is not None:
|
vid_writer.write(frame.astype(np.uint8))
|
cv2.waitKey(1)
|
|
if out_path is not None:
|
vid_writer.release()
|
cv2.destroyAllWindows()
|
|
|
def main():
|
# Specify paths for all necessary files
|
test_path = os.path.abspath('../data/test4.mp4')
|
#weight_path = 'backup/tiny_yolo_10_39500.weights'
|
#cfg_path = 'cfg/tiny_yolo_10.cfg'
|
#class_path = "data/obj_10.names"
|
weight_path = 'weights/second_general/tiny_yolo_final.weights'
|
cfg_path = 'cfg/tiny_yolo.cfg'
|
class_path = 'data/obj.names'
|
out_dir = 'out'
|
if not os.path.isfile(test_path):
|
print('The test file %s doesn\'t exist!' % os.path.abspath(test_path))
|
return
|
if not os.path.isfile(weight_path):
|
print('The weight file %s doesn\'t exist!' % os.path.abspath(test_path))
|
return
|
if not os.path.isfile(cfg_path):
|
print('The config file %s doesn\'t exist!' % os.path.abspath(test_path))
|
return
|
if not os.path.isfile(class_path):
|
print('The class file %s doesn\'t exist!' % os.path.abspath(test_path))
|
return
|
|
thresh_conf = 0.01
|
thresh_nms = 0.8
|
|
# Setup
|
# Read class names from text file
|
with open(class_path, 'r') as f:
|
classes = [line.strip() for line in f.readlines()]
|
# Load up the neural net using the config and weights
|
net = cv2.dnn.readNetFromDarknet(cfg_path, weight_path)
|
net.setPreferableBackend(cv2.dnn.DNN_BACKEND_OPENCV)
|
net.setPreferableTarget(cv2.dnn.DNN_TARGET_CPU)
|
|
# Save the detection result if out_dir is provided
|
if out_dir is None or out_dir == '':
|
out_path = None
|
else:
|
out_path = out_dir + '/' + os.path.split(test_path)[1]
|
# Check if test file is image or video
|
test_ext = test_path[test_path.find('.') + 1:]
|
|
if test_ext in ['jpg', 'jpeg', 'bmp', 'png', 'tiff']:
|
img = cv2.imread(test_path)
|
detect_frame(net, classes, img, out_path=out_path, thresh_conf=thresh_conf, thresh_nms=thresh_nms)
|
else:
|
capture = cv2.VideoCapture(0)
|
detect_video(net, classes, capture, out_path=out_path, thresh_conf=thresh_conf, thresh_nms=thresh_nms)
|
capture.release()
|
pass
|
|
|
if __name__ == '__main__':
|
main()
|