#include "cost_layer.h"
|
#include "utils.h"
|
#include "mini_blas.h"
|
#include <math.h>
|
#include <string.h>
|
#include <stdlib.h>
|
#include <stdio.h>
|
|
COST_TYPE get_cost_type(char *s)
|
{
|
if (strcmp(s, "sse")==0) return SSE;
|
if (strcmp(s, "detection")==0) return DETECTION;
|
fprintf(stderr, "Couldn't find activation function %s, going with SSE\n", s);
|
return SSE;
|
}
|
|
char *get_cost_string(COST_TYPE a)
|
{
|
switch(a){
|
case SSE:
|
return "sse";
|
case DETECTION:
|
return "detection";
|
}
|
return "sse";
|
}
|
|
cost_layer *make_cost_layer(int batch, int inputs, COST_TYPE type)
|
{
|
fprintf(stderr, "Cost Layer: %d inputs\n", inputs);
|
cost_layer *layer = calloc(1, sizeof(cost_layer));
|
layer->batch = batch;
|
layer->inputs = inputs;
|
layer->type = type;
|
layer->delta = calloc(inputs*batch, sizeof(float));
|
layer->output = calloc(1, sizeof(float));
|
#ifdef GPU
|
layer->delta_cl = cl_make_array(layer->delta, inputs*batch);
|
#endif
|
return layer;
|
}
|
|
void forward_cost_layer(cost_layer layer, float *input, float *truth)
|
{
|
if (!truth) return;
|
copy_cpu(layer.batch*layer.inputs, truth, 1, layer.delta, 1);
|
axpy_cpu(layer.batch*layer.inputs, -1, input, 1, layer.delta, 1);
|
if(layer.type == DETECTION){
|
int i;
|
for(i = 0; i < layer.batch*layer.inputs; ++i){
|
if((i%5) && !truth[(i/5)*5]) layer.delta[i] = 0;
|
}
|
}
|
*(layer.output) = dot_cpu(layer.batch*layer.inputs, layer.delta, 1, layer.delta, 1);
|
//printf("cost: %f\n", *layer.output);
|
}
|
|
void backward_cost_layer(const cost_layer layer, float *input, float *delta)
|
{
|
copy_cpu(layer.batch*layer.inputs, layer.delta, 1, delta, 1);
|
}
|
|
#ifdef GPU
|
|
cl_kernel get_mask_kernel()
|
{
|
static int init = 0;
|
static cl_kernel kernel;
|
if(!init){
|
kernel = get_kernel("src/axpy.cl", "mask", 0);
|
init = 1;
|
}
|
return kernel;
|
}
|
|
void mask_ongpu(int n, cl_mem x, cl_mem mask, int mod)
|
{
|
cl_kernel kernel = get_mask_kernel();
|
cl_command_queue queue = cl.queue;
|
|
cl_uint i = 0;
|
cl.error = clSetKernelArg(kernel, i++, sizeof(n), (void*) &n);
|
cl.error = clSetKernelArg(kernel, i++, sizeof(x), (void*) &x);
|
cl.error = clSetKernelArg(kernel, i++, sizeof(mask), (void*) &mask);
|
cl.error = clSetKernelArg(kernel, i++, sizeof(mod), (void*) &mod);
|
check_error(cl);
|
|
const size_t global_size[] = {n};
|
|
cl.error = clEnqueueNDRangeKernel(queue, kernel, 1, 0, global_size, 0, 0, 0, 0);
|
check_error(cl);
|
|
}
|
|
void forward_cost_layer_gpu(cost_layer layer, cl_mem input, cl_mem truth)
|
{
|
if (!truth) return;
|
|
copy_ongpu(layer.batch*layer.inputs, truth, 1, layer.delta_cl, 1);
|
axpy_ongpu(layer.batch*layer.inputs, -1, input, 1, layer.delta_cl, 1);
|
|
if(layer.type==DETECTION){
|
mask_ongpu(layer.inputs*layer.batch, layer.delta_cl, truth, 5);
|
}
|
|
cl_read_array(layer.delta_cl, layer.delta, layer.batch*layer.inputs);
|
*(layer.output) = dot_cpu(layer.batch*layer.inputs, layer.delta, 1, layer.delta, 1);
|
//printf("cost: %f\n", *layer.output);
|
}
|
|
void backward_cost_layer_gpu(const cost_layer layer, cl_mem input, cl_mem delta)
|
{
|
copy_ongpu(layer.batch*layer.inputs, layer.delta_cl, 1, delta, 1);
|
}
|
#endif
|