import cv2
|
import numpy as np
|
import math
|
from screeninfo import get_monitors
|
|
"""
|
This is the first attempt of identifying MTG cards using only classical computer vision technique.
|
Most of the processes are similar to the process used in opencv_dnn.py, but it instead tries to use
|
Hough transformation to identify straight edges of the card.
|
However, there were difficulties trying to associate multiple edges into a rectangle, as some of them
|
either didn't show up or was too short to intersect.
|
There were also no method to dynamically adjust various threshold, even finding all the edges were
|
very conditional.
|
"""
|
|
def detect_a_card(img, thresh_val=80, blur_radius=None, dilate_radius=None, min_hyst=80, max_hyst=200,
|
min_line_length=None, max_line_gap=None, debug=False):
|
dim_img = (len(img[0]), len(img)) # (width, height)
|
# Intermediate variables
|
|
# Default values
|
if blur_radius is None:
|
blur_radius = math.floor(min(dim_img) / 100 + 0.5) // 2 * 2 + 1 # Rounded to the nearest odd
|
if dilate_radius is None:
|
dilate_radius = math.floor(min(dim_img) / 67 + 0.5)
|
if min_line_length is None:
|
min_line_length = min(dim_img) / 10
|
if max_line_gap is None:
|
max_line_gap = min(dim_img) / 10
|
|
thresh_radius = math.floor(min(dim_img) / 20 + 0.5) // 2 * 2 + 1 # Rounded to the nearest odd
|
|
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
# Median blur better removes background textures than Gaussian blur
|
img_blur = cv2.medianBlur(img_gray, blur_radius)
|
# Truncate the bright area while detecting the border
|
img_thresh = cv2.adaptiveThreshold(img_blur, 255, cv2.ADAPTIVE_THRESH_MEAN_C,
|
cv2.THRESH_BINARY_INV, thresh_radius, 20)
|
#_, img_thresh = cv2.threshold(img_blur, thresh_val, 255, cv2.THRESH_TRUNC)
|
|
# Dilate the image to emphasize thick borders around the card
|
kernel_dilate = np.ones((dilate_radius, dilate_radius), np.uint8)
|
#img_dilate = cv2.dilate(img_thresh, kernel_dilate, iterations=1)
|
img_dilate = cv2.erode(img_thresh, kernel_dilate, iterations=1)
|
|
img_contour = img_dilate.copy()
|
_, contours, _ = cv2.findContours(img_contour, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
img_contour = cv2.cvtColor(img_contour, cv2.COLOR_GRAY2BGR)
|
img_contour = cv2.drawContours(img_contour, contours, -1, (128, 128, 128), 1)
|
card_found = contours is not None
|
print(len(contours))
|
print([len(contour) for contour in contours])
|
|
# find the biggest area
|
c = max(contours, key=cv2.contourArea)
|
|
x, y, w, h = cv2.boundingRect(c)
|
# draw the book contour (in green)
|
img_contour = cv2.drawContours(img_contour, [c], -1, (0, 255, 0), 1)
|
|
# Canny edge - low minimum hysteresis to detect glowed area,
|
# and high maximum hysteresis to compensate for high false positives.
|
img_canny = cv2.Canny(img_dilate, min_hyst, max_hyst)
|
#img_canny = img_dilate
|
# Apply Hough transformation to detect the edges
|
detected_lines = cv2.HoughLinesP(img_dilate, 1, np.pi / 180, threshold=60,
|
minLineLength=min_line_length,
|
maxLineGap=max_line_gap)
|
card_found = detected_lines is not None
|
print(len(detected_lines))
|
|
if card_found:
|
if debug:
|
img_hough = cv2.cvtColor(img_dilate.copy(), cv2.COLOR_GRAY2BGR)
|
for line in detected_lines:
|
x1, y1, x2, y2 = line[0]
|
cv2.line(img_hough, (x1, y1), (x2, y2), (0, 0, 255), 1)
|
elif not debug:
|
print('Hough couldn\'t find any lines')
|
|
# Debug: display intermediate results from various steps
|
if debug:
|
img_blank = np.zeros((len(img), len(img[0]), 3), np.uint8)
|
img_thresh = cv2.cvtColor(img_thresh, cv2.COLOR_GRAY2BGR)
|
img_dilate = cv2.cvtColor(img_dilate, cv2.COLOR_GRAY2BGR)
|
#img_canny = cv2.cvtColor(img_canny, cv2.COLOR_GRAY2BGR)
|
if not card_found:
|
img_hough = img_blank
|
|
# Append all images together
|
img_row_1 = np.concatenate((img, img_thresh), axis=1)
|
img_row_2 = np.concatenate((img_contour, img_hough), axis=1)
|
img_result = np.concatenate((img_row_1, img_row_2), axis=0)
|
|
# Resize the final image to fit into the main monitor's resolution
|
screen_size = get_monitors()[0]
|
resize_ratio = max(len(img_result[0]) / screen_size.width, len(img_result) / screen_size.height, 1)
|
img_result = cv2.resize(img_result, (int(len(img_result[0]) // resize_ratio),
|
int(len(img_result) // resize_ratio)))
|
cv2.imshow('Result', img_result)
|
cv2.waitKey(0)
|
|
# TODO: output meaningful data
|
return card_found
|
|
def main():
|
img_test = cv2.imread('data/li38_handOfCards.jpg')
|
card_found = detect_a_card(img_test,
|
#dilate_radius=5,
|
#thresh_val=100,
|
#min_hyst=40,
|
#max_hyst=160,
|
#min_line_length=50,
|
#max_line_gap=100,
|
debug=True)
|
if card_found:
|
return
|
return
|
for dilate_radius in range(1, 6):
|
for min_hyst in range(50, 91, 10):
|
for max_hyst in range(180, 119, -20):
|
print('dilate_radius=%d, min_hyst=%d, max_hyst=%d: ' % (dilate_radius, min_hyst, max_hyst),
|
end='', flush=True)
|
card_found = detect_a_card(img_test, dilate_radius=dilate_radius,
|
min_hyst=min_hyst, max_hyst=max_hyst, debug=True)
|
if card_found:
|
print('Card found')
|
else:
|
print('Not found')
|
|
if __name__ == '__main__':
|
main()
|