Joseph Redmon
2014-04-30 00d483697a6e395ef6776320cd1e52a04f4367be
src/network.c
@@ -6,8 +6,8 @@
#include "connected_layer.h"
#include "convolutional_layer.h"
//#include "old_conv.h"
#include "maxpool_layer.h"
#include "normalization_layer.h"
#include "softmax_layer.h"
network make_network(int n, int batch)
@@ -40,6 +40,17 @@
    fprintf(fp, "data=");
    for(i = 0; i < l->n; ++i) fprintf(fp, "%g,", l->biases[i]);
    for(i = 0; i < l->n*l->c*l->size*l->size; ++i) fprintf(fp, "%g,", l->filters[i]);
    /*
    int j,k;
    for(i = 0; i < l->n; ++i) fprintf(fp, "%g,", l->biases[i]);
    for(i = 0; i < l->n; ++i){
        for(j = l->c-1; j >= 0; --j){
            for(k = 0; k < l->size*l->size; ++k){
                fprintf(fp, "%g,", l->filters[i*(l->c*l->size*l->size)+j*l->size*l->size+k]);
            }
        }
    }
    */
    fprintf(fp, "\n\n");
}
void print_connected_cfg(FILE *fp, connected_layer *l, int first)
@@ -48,9 +59,9 @@
    fprintf(fp, "[connected]\n");
    if(first) fprintf(fp, "batch=%d\ninput=%d\n", l->batch, l->inputs);
    fprintf(fp, "output=%d\n"
                "activation=%s\n",
                l->outputs,
                get_activation_string(l->activation));
            "activation=%s\n",
            l->outputs,
            get_activation_string(l->activation));
    fprintf(fp, "data=");
    for(i = 0; i < l->outputs; ++i) fprintf(fp, "%g,", l->biases[i]);
    for(i = 0; i < l->inputs*l->outputs; ++i) fprintf(fp, "%g,", l->weights[i]);
@@ -61,13 +72,27 @@
{
    fprintf(fp, "[maxpool]\n");
    if(first) fprintf(fp,   "batch=%d\n"
                            "height=%d\n"
                            "width=%d\n"
                            "channels=%d\n",
                            l->batch,l->h, l->w, l->c);
            "height=%d\n"
            "width=%d\n"
            "channels=%d\n",
            l->batch,l->h, l->w, l->c);
    fprintf(fp, "stride=%d\n\n", l->stride);
}
void print_normalization_cfg(FILE *fp, normalization_layer *l, int first)
{
    fprintf(fp, "[localresponsenormalization]\n");
    if(first) fprintf(fp,   "batch=%d\n"
            "height=%d\n"
            "width=%d\n"
            "channels=%d\n",
            l->batch,l->h, l->w, l->c);
    fprintf(fp, "size=%d\n"
                "alpha=%g\n"
                "beta=%g\n"
                "kappa=%g\n\n", l->size, l->alpha, l->beta, l->kappa);
}
void print_softmax_cfg(FILE *fp, softmax_layer *l, int first)
{
    fprintf(fp, "[softmax]\n");
@@ -88,6 +113,8 @@
            print_connected_cfg(fp, (connected_layer *)net.layers[i], i==0);
        else if(net.types[i] == MAXPOOL)
            print_maxpool_cfg(fp, (maxpool_layer *)net.layers[i], i==0);
        else if(net.types[i] == NORMALIZATION)
            print_normalization_cfg(fp, (normalization_layer *)net.layers[i], i==0);
        else if(net.types[i] == SOFTMAX)
            print_softmax_cfg(fp, (softmax_layer *)net.layers[i], i==0);
    }
@@ -118,6 +145,11 @@
            forward_maxpool_layer(layer, input);
            input = layer.output;
        }
        else if(net.types[i] == NORMALIZATION){
            normalization_layer layer = *(normalization_layer *)net.layers[i];
            forward_normalization_layer(layer, input);
            input = layer.output;
        }
    }
}
@@ -135,6 +167,9 @@
        else if(net.types[i] == SOFTMAX){
            //maxpool_layer layer = *(maxpool_layer *)net.layers[i];
        }
        else if(net.types[i] == NORMALIZATION){
            //maxpool_layer layer = *(maxpool_layer *)net.layers[i];
        }
        else if(net.types[i] == CONNECTED){
            connected_layer layer = *(connected_layer *)net.layers[i];
            update_connected_layer(layer, step, momentum, decay);
@@ -156,6 +191,9 @@
    } else if(net.types[i] == CONNECTED){
        connected_layer layer = *(connected_layer *)net.layers[i];
        return layer.output;
    } else if(net.types[i] == NORMALIZATION){
        normalization_layer layer = *(normalization_layer *)net.layers[i];
        return layer.output;
    }
    return 0;
}
@@ -233,6 +271,10 @@
            maxpool_layer layer = *(maxpool_layer *)net.layers[i];
            if(i != 0) backward_maxpool_layer(layer, prev_input, prev_delta);
        }
        else if(net.types[i] == NORMALIZATION){
            normalization_layer layer = *(normalization_layer *)net.layers[i];
            if(i != 0) backward_normalization_layer(layer, prev_input, prev_delta);
        }
        else if(net.types[i] == SOFTMAX){
            softmax_layer layer = *(softmax_layer *)net.layers[i];
            if(i != 0) backward_softmax_layer(layer, prev_input, prev_delta);
@@ -272,7 +314,7 @@
            error += err;
            ++pos;
        }
        //printf("%d %f %f\n", i,net.output[0], d.y.vals[index][0]);
        //if((i+1)%10 == 0){
@@ -341,34 +383,34 @@
}
/*
int resize_network(network net, int h, int w, int c)
{
    int i;
    for (i = 0; i < net.n; ++i){
        if(net.types[i] == CONVOLUTIONAL){
            convolutional_layer *layer = (convolutional_layer *)net.layers[i];
            layer->h = h;
            layer->w = w;
            layer->c = c;
            image output = get_convolutional_image(*layer);
            h = output.h;
            w = output.w;
            c = output.c;
        }
        else if(net.types[i] == MAXPOOL){
            maxpool_layer *layer = (maxpool_layer *)net.layers[i];
            layer->h = h;
            layer->w = w;
            layer->c = c;
            image output = get_maxpool_image(*layer);
            h = output.h;
            w = output.w;
            c = output.c;
        }
    }
    return 0;
}
*/
   int resize_network(network net, int h, int w, int c)
   {
   int i;
   for (i = 0; i < net.n; ++i){
   if(net.types[i] == CONVOLUTIONAL){
   convolutional_layer *layer = (convolutional_layer *)net.layers[i];
   layer->h = h;
   layer->w = w;
   layer->c = c;
   image output = get_convolutional_image(*layer);
   h = output.h;
   w = output.w;
   c = output.c;
   }
   else if(net.types[i] == MAXPOOL){
   maxpool_layer *layer = (maxpool_layer *)net.layers[i];
   layer->h = h;
   layer->w = w;
   layer->c = c;
   image output = get_maxpool_image(*layer);
   h = output.h;
   w = output.w;
   c = output.c;
   }
   }
   return 0;
   }
 */
int resize_network(network net, int h, int w, int c)
{
@@ -381,16 +423,21 @@
            h = output.h;
            w = output.w;
            c = output.c;
        }
        else if(net.types[i] == MAXPOOL){
        }else if(net.types[i] == MAXPOOL){
            maxpool_layer *layer = (maxpool_layer *)net.layers[i];
            resize_maxpool_layer(layer, h, w, c);
            image output = get_maxpool_image(*layer);
            h = output.h;
            w = output.w;
            c = output.c;
        }
        else{
        }else if(net.types[i] == NORMALIZATION){
            normalization_layer *layer = (normalization_layer *)net.layers[i];
            resize_normalization_layer(layer, h, w, c);
            image output = get_normalization_image(*layer);
            h = output.h;
            w = output.w;
            c = output.c;
        }else{
            error("Cannot resize this type of layer");
        }
    }
@@ -413,6 +460,10 @@
        maxpool_layer layer = *(maxpool_layer *)net.layers[i];
        return get_maxpool_image(layer);
    }
    else if(net.types[i] == NORMALIZATION){
        normalization_layer layer = *(normalization_layer *)net.layers[i];
        return get_normalization_image(layer);
    }
    return make_empty_image(0,0,0);
}
@@ -428,13 +479,18 @@
void visualize_network(network net)
{
    image *prev = 0;
    int i;
    char buff[256];
    for(i = 0; i < net.n; ++i){
        sprintf(buff, "Layer %d", i);
        if(net.types[i] == CONVOLUTIONAL){
            convolutional_layer layer = *(convolutional_layer *)net.layers[i];
            visualize_convolutional_layer(layer, buff);
            prev = visualize_convolutional_layer(layer, buff, prev);
        }
        if(net.types[i] == NORMALIZATION){
            normalization_layer layer = *(normalization_layer *)net.layers[i];
            visualize_normalization_layer(layer, buff);
        }
    } 
}
@@ -506,3 +562,4 @@
    return acc;
}