| | |
| | | float *y; |
| | | } float_pair; |
| | | |
| | | float_pair get_rnn_data(char *text, int len, int batch, int steps) |
| | | float_pair get_rnn_data(unsigned char *text, int characters, int len, int batch, int steps) |
| | | { |
| | | float *x = calloc(batch * steps * 256, sizeof(float)); |
| | | float *y = calloc(batch * steps * 256, sizeof(float)); |
| | | float *x = calloc(batch * steps * characters, sizeof(float)); |
| | | float *y = calloc(batch * steps * characters, sizeof(float)); |
| | | int i,j; |
| | | for(i = 0; i < batch; ++i){ |
| | | int index = rand() %(len - steps - 1); |
| | | /* |
| | | int done = 1; |
| | | while(!done){ |
| | | index = rand() %(len - steps - 1); |
| | | while(index < len-steps-1 && text[index++] != '\n'); |
| | | if (index < len-steps-1) done = 1; |
| | | } |
| | | } |
| | | */ |
| | | for(j = 0; j < steps; ++j){ |
| | | x[(j*batch + i)*256 + text[index + j]] = 1; |
| | | y[(j*batch + i)*256 + text[index + j + 1]] = 1; |
| | | x[(j*batch + i)*characters + text[index + j]] = 1; |
| | | y[(j*batch + i)*characters + text[index + j + 1]] = 1; |
| | | |
| | | if(text[index+j] > 255 || text[index+j] <= 0 || text[index+j+1] > 255 || text[index+j+1] <= 0){ |
| | | text[index+j+2] = 0; |
| | | printf("%d %d %d %d %d\n", index, j, len, (int)text[index+j], (int)text[index+j+1]); |
| | | printf("%s", text+index); |
| | | error("Bad char"); |
| | | } |
| | | } |
| | | } |
| | | float_pair p; |
| | |
| | | |
| | | void train_char_rnn(char *cfgfile, char *weightfile, char *filename) |
| | | { |
| | | FILE *fp = fopen(filename, "r"); |
| | | //FILE *fp = fopen("data/ab.txt", "r"); |
| | | //FILE *fp = fopen("data/grrm/asoiaf.txt", "r"); |
| | | FILE *fp = fopen(filename, "rb"); |
| | | |
| | | fseek(fp, 0, SEEK_END); |
| | | size_t size = ftell(fp); |
| | | fseek(fp, 0, SEEK_SET); |
| | | |
| | | char *text = calloc(size, sizeof(char)); |
| | | unsigned char *text = calloc(size+1, sizeof(char)); |
| | | fread(text, 1, size, fp); |
| | | fclose(fp); |
| | | |
| | |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | int inputs = get_network_input_size(net); |
| | | fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | int batch = net.batch; |
| | | int steps = net.time_steps; |
| | |
| | | while(get_current_batch(net) < net.max_batches){ |
| | | i += 1; |
| | | time=clock(); |
| | | float_pair p = get_rnn_data(text, size, batch/steps, steps); |
| | | float_pair p = get_rnn_data(text, inputs, size, batch/steps, steps); |
| | | |
| | | float loss = train_network_datum(net, p.x, p.y) / (batch); |
| | | free(p.x); |
| | |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | |
| | | int inputs = get_network_input_size(net); |
| | | |
| | | int i, j; |
| | | for(i = 0; i < net.n; ++i) net.layers[i].temperature = temp; |
| | | char c; |
| | | unsigned char c; |
| | | int len = strlen(seed); |
| | | float *input = calloc(256, sizeof(float)); |
| | | float *input = calloc(inputs, sizeof(float)); |
| | | for(i = 0; i < len-1; ++i){ |
| | | c = seed[i]; |
| | | input[(int)c] = 1; |
| | |
| | | input[(int)c] = 1; |
| | | float *out = network_predict(net, input); |
| | | input[(int)c] = 0; |
| | | for(j = 0; j < 256; ++j){ |
| | | for(j = 0; j < inputs; ++j){ |
| | | sum += out[j]; |
| | | if(sum > r) break; |
| | | } |
| | |
| | | printf("\n"); |
| | | } |
| | | |
| | | void valid_char_rnn(char *cfgfile, char *weightfile, char *filename) |
| | | void valid_char_rnn(char *cfgfile, char *weightfile) |
| | | { |
| | | FILE *fp = fopen(filename, "r"); |
| | | //FILE *fp = fopen("data/ab.txt", "r"); |
| | | //FILE *fp = fopen("data/grrm/asoiaf.txt", "r"); |
| | | |
| | | fseek(fp, 0, SEEK_END); |
| | | size_t size = ftell(fp); |
| | | fseek(fp, 0, SEEK_SET); |
| | | |
| | | char *text = calloc(size, sizeof(char)); |
| | | fread(text, 1, size, fp); |
| | | fclose(fp); |
| | | |
| | | char *base = basecfg(cfgfile); |
| | | fprintf(stderr, "%s\n", base); |
| | | |
| | |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | |
| | | int i; |
| | | char c; |
| | | float *input = calloc(256, sizeof(float)); |
| | | int inputs = get_network_input_size(net); |
| | | |
| | | int count = 0; |
| | | int c; |
| | | float *input = calloc(inputs, sizeof(float)); |
| | | float sum = 0; |
| | | for(i = 0; i < size-1; ++i){ |
| | | c = text[i]; |
| | | input[(int)c] = 1; |
| | | c = getc(stdin); |
| | | float log2 = log(2); |
| | | while(c != EOF){ |
| | | int next = getc(stdin); |
| | | if(next == EOF) break; |
| | | ++count; |
| | | input[c] = 1; |
| | | float *out = network_predict(net, input); |
| | | input[(int)c] = 0; |
| | | sum += log(out[(int)text[i+1]]); |
| | | input[c] = 0; |
| | | sum += log(out[next])/log2; |
| | | c = next; |
| | | } |
| | | printf("Log Probability: %f\n", sum); |
| | | printf("Perplexity: %f\n", pow(2, -sum/count)); |
| | | } |
| | | |
| | | |
| | |
| | | } |
| | | char *filename = find_char_arg(argc, argv, "-file", "data/shakespeare.txt"); |
| | | char *seed = find_char_arg(argc, argv, "-seed", "\n"); |
| | | int len = find_int_arg(argc, argv, "-len", 100); |
| | | float temp = find_float_arg(argc, argv, "-temp", 1); |
| | | int len = find_int_arg(argc, argv, "-len", 1000); |
| | | float temp = find_float_arg(argc, argv, "-temp", .7); |
| | | int rseed = find_int_arg(argc, argv, "-srand", time(0)); |
| | | |
| | | char *cfg = argv[3]; |
| | | char *weights = (argc > 4) ? argv[4] : 0; |
| | | if(0==strcmp(argv[2], "train")) train_char_rnn(cfg, weights, filename); |
| | | else if(0==strcmp(argv[2], "valid")) valid_char_rnn(cfg, weights, filename); |
| | | else if(0==strcmp(argv[2], "test")) test_char_rnn(cfg, weights, len, seed, temp, rseed); |
| | | else if(0==strcmp(argv[2], "valid")) valid_char_rnn(cfg, weights); |
| | | else if(0==strcmp(argv[2], "generate")) test_char_rnn(cfg, weights, len, seed, temp, rseed); |
| | | } |