| | |
| | | l.dstTensorDesc, |
| | | output16); |
| | | |
| | | cuda_convert_f16_to_f32(output16, output16_size, l.output_gpu); |
| | | |
| | | if (l.batch_normalize) |
| | | { |
| | | if (state.train) // Training |
| | | { |
| | | copy_ongpu(l.outputs*l.batch / 2, output16, 1, l.x_gpu, 1); |
| | | //cudaMemcpyAsync(l.x_gpu, output16, l.outputs*l.batch*sizeof(half), cudaMemcpyDefault, get_cuda_stream()); |
| | | float one = 1; |
| | | float zero = 0; |
| | | // Batch-normalization can still take FP16 inputs and outputs, saving half the bandwidth |
| | | // compared to FP32, itÂ’s just that the statistics and value adjustment should be done in FP32. |
| | | cudnnBatchNormalizationForwardTraining(cudnn_handle(), |
| | | CUDNN_BATCHNORM_SPATIAL, |
| | | &one, |
| | | &zero, |
| | | l.normDstTensorDescF16, |
| | | l.x_gpu, // input |
| | | l.normDstTensorDescF16, |
| | | output16, // output |
| | | l.normTensorDesc, |
| | | l.scales_gpu, |
| | | l.biases_gpu, |
| | | .01, |
| | | l.rolling_mean_gpu, // output (should be FP32) |
| | | l.rolling_variance_gpu, // output (should be FP32) |
| | | .00001, |
| | | l.mean_gpu, // output (should be FP32) |
| | | l.variance_gpu); // output (should be FP32) |
| | | |
| | | cuda_convert_f16_to_f32(output16, output16_size, l.output_gpu); |
| | | //forward_batchnorm_layer_gpu(l, state); |
| | | } |
| | | else // Detection |
| | | { |
| | | cuda_convert_f16_to_f32(output16, output16_size, l.output_gpu); |
| | | normalize_gpu(l.output_gpu, l.rolling_mean_gpu, l.rolling_variance_gpu, l.batch, l.out_c, l.out_h*l.out_w); |
| | | scale_bias_gpu(l.output_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w); |
| | | add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.out_c, l.out_w*l.out_h); |
| | | } |
| | | } |
| | | else // BIAS only |
| | | { |
| | | cuda_convert_f16_to_f32(output16, output16_size, l.output_gpu); |
| | | add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.n, l.out_w*l.out_h); |
| | | } |
| | | |
| | | #else |
| | | |
| | |
| | | &one, |
| | | l.dstTensorDesc, |
| | | l.output_gpu); |
| | | #endif |
| | | #endif // CUDNN_HALF |
| | | |
| | | |
| | | #else |
| | |
| | | } |
| | | #endif |
| | | |
| | | #ifndef CUDNN_HALF |
| | | if (l.batch_normalize) { |
| | | forward_batchnorm_layer_gpu(l, state); |
| | | } |
| | | else { |
| | | add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.n, l.out_w*l.out_h); |
| | | } |
| | | #endif // no CUDNN_HALF |
| | | |
| | | activate_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation); |
| | | //if(l.dot > 0) dot_error_gpu(l); |
| | |
| | | |
| | | backward_bias_gpu(l.bias_updates_gpu, l.delta_gpu, l.batch, l.n, l.out_w*l.out_h); |
| | | |
| | | #ifndef CUDNN_HALF |
| | | if(l.batch_normalize){ |
| | | backward_batchnorm_layer_gpu(l, state); |
| | | //axpy_ongpu(l.outputs*l.batch, -state.net.decay, l.x_gpu, 1, l.delta_gpu, 1); |
| | | } else { |
| | | //axpy_ongpu(l.outputs*l.batch, -state.net.decay, l.output_gpu, 1, l.delta_gpu, 1); |
| | | //backward_bias_gpu(l.bias_updates_gpu, l.delta_gpu, l.batch, l.n, l.out_w*l.out_h); |
| | | } |
| | | #endif // no CUDNN_HALF |
| | | float *original_input = state.input; |
| | | |
| | | if(l.xnor) state.input = l.binary_input_gpu; |
| | |
| | | |
| | | cuda_convert_f32_to_f16(state.input, input16_size, input16); |
| | | cuda_convert_f32_to_f16(l.delta_gpu, delta16_size, delta16); |
| | | |
| | | |
| | | if (l.batch_normalize) { |
| | | //if (!state.train) { |
| | | // l.mean_gpu = l.rolling_mean_gpu; |
| | | // l.variance_gpu = l.rolling_variance_gpu; |
| | | //} |
| | | float one = 1; |
| | | float zero = 0; |
| | | cudnnBatchNormalizationBackward(cudnn_handle(), |
| | | CUDNN_BATCHNORM_SPATIAL, |
| | | &one, |
| | | &zero, |
| | | &one, |
| | | &one, |
| | | l.normDstTensorDescF16, |
| | | l.x_gpu, // input |
| | | l.normDstTensorDescF16, |
| | | delta16, // input |
| | | l.normDstTensorDescF16, |
| | | l.x_norm_gpu, // output |
| | | l.normTensorDesc, |
| | | l.scales_gpu, // output (should be FP32) |
| | | l.scale_updates_gpu, // output (should be FP32) |
| | | l.bias_updates_gpu, // output (should be FP32) |
| | | .00001, |
| | | l.mean_gpu, // input (should be FP32) |
| | | l.variance_gpu); // input (should be FP32) |
| | | copy_ongpu(l.outputs*l.batch / 2, l.x_norm_gpu, 1, delta16, 1); |
| | | //cudaMemcpyAsync(delta16, l.x_norm_gpu, l.outputs*l.batch * sizeof(half), cudaMemcpyDefault, get_cuda_stream()); |
| | | } |
| | | else |
| | | { |
| | | //backward_bias_gpu(l.bias_updates_gpu, l.delta_gpu, l.batch, l.n, l.out_w*l.out_h); |
| | | } |
| | | |
| | | // convert input: state.input (x), l.delta_gpu (y) from fp32 to fp16 |
| | | // get output: l.weight_updates_gpu (dw) and convert it to fp32 (ONLY if it is fp16) |
| | | |