| | |
| | | #include "convolutional_layer.h" |
| | | #include "utils.h" |
| | | #include "batchnorm_layer.h" |
| | | #include "im2col.h" |
| | | #include "col2im.h" |
| | | #include "blas.h" |
| | |
| | | #include <stdio.h> |
| | | #include <time.h> |
| | | |
| | | #ifdef AI2 |
| | | #include "xnor_layer.h" |
| | | #endif |
| | | |
| | | #ifndef AI2 |
| | | #define AI2 0 |
| | | void forward_xnor_layer(layer l, network_state state); |
| | | #endif |
| | | |
| | | void swap_binary(convolutional_layer *l) |
| | | { |
| | | float *swap = l->weights; |
| | | l->weights = l->binary_weights; |
| | | l->binary_weights = swap; |
| | | |
| | | #ifdef GPU |
| | | swap = l->weights_gpu; |
| | | l->weights_gpu = l->binary_weights_gpu; |
| | | l->binary_weights_gpu = swap; |
| | | #endif |
| | | } |
| | | |
| | | void binarize_weights(float *weights, int n, int size, float *binary) |
| | | { |
| | | int i, f; |
| | | for(f = 0; f < n; ++f){ |
| | | float mean = 0; |
| | | for(i = 0; i < size; ++i){ |
| | | mean += fabs(weights[f*size + i]); |
| | | } |
| | | mean = mean / size; |
| | | for(i = 0; i < size; ++i){ |
| | | binary[f*size + i] = (weights[f*size + i] > 0) ? mean : -mean; |
| | | } |
| | | } |
| | | } |
| | | |
| | | void binarize_cpu(float *input, int n, float *binary) |
| | | { |
| | | int i; |
| | | for(i = 0; i < n; ++i){ |
| | | binary[i] = (input[i] > 0) ? 1 : -1; |
| | | } |
| | | } |
| | | |
| | | void binarize_input(float *input, int n, int size, float *binary) |
| | | { |
| | | int i, s; |
| | | for(s = 0; s < size; ++s){ |
| | | float mean = 0; |
| | | for(i = 0; i < n; ++i){ |
| | | mean += fabs(input[i*size + s]); |
| | | } |
| | | mean = mean / n; |
| | | for(i = 0; i < n; ++i){ |
| | | binary[i*size + s] = (input[i*size + s] > 0) ? mean : -mean; |
| | | } |
| | | } |
| | | } |
| | | |
| | | int convolutional_out_height(convolutional_layer l) |
| | | { |
| | | int h = l.h; |
| | | if (!l.pad) h -= l.size; |
| | | else h -= 1; |
| | | return h/l.stride + 1; |
| | | return (l.h + 2*l.pad - l.size) / l.stride + 1; |
| | | } |
| | | |
| | | int convolutional_out_width(convolutional_layer l) |
| | | { |
| | | int w = l.w; |
| | | if (!l.pad) w -= l.size; |
| | | else w -= 1; |
| | | return w/l.stride + 1; |
| | | return (l.w + 2*l.pad - l.size) / l.stride + 1; |
| | | } |
| | | |
| | | image get_convolutional_image(convolutional_layer l) |
| | |
| | | return float_to_image(w,h,c,l.delta); |
| | | } |
| | | |
| | | convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation) |
| | | size_t get_workspace_size(layer l){ |
| | | #ifdef CUDNN |
| | | if(gpu_index >= 0){ |
| | | size_t most = 0; |
| | | size_t s = 0; |
| | | cudnnGetConvolutionForwardWorkspaceSize(cudnn_handle(), |
| | | l.srcTensorDesc, |
| | | l.weightDesc, |
| | | l.convDesc, |
| | | l.dstTensorDesc, |
| | | l.fw_algo, |
| | | &s); |
| | | if (s > most) most = s; |
| | | cudnnGetConvolutionBackwardFilterWorkspaceSize(cudnn_handle(), |
| | | l.srcTensorDesc, |
| | | l.ddstTensorDesc, |
| | | l.convDesc, |
| | | l.dweightDesc, |
| | | l.bf_algo, |
| | | &s); |
| | | if (s > most) most = s; |
| | | cudnnGetConvolutionBackwardDataWorkspaceSize(cudnn_handle(), |
| | | l.weightDesc, |
| | | l.ddstTensorDesc, |
| | | l.convDesc, |
| | | l.dsrcTensorDesc, |
| | | l.bd_algo, |
| | | &s); |
| | | if (s > most) most = s; |
| | | return most; |
| | | } |
| | | #endif |
| | | return (size_t)l.out_h*l.out_w*l.size*l.size*l.c*sizeof(float); |
| | | } |
| | | |
| | | #ifdef GPU |
| | | #ifdef CUDNN |
| | | void cudnn_convolutional_setup(layer *l) |
| | | { |
| | | cudnnSetTensor4dDescriptor(l->dsrcTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->c, l->h, l->w); |
| | | cudnnSetTensor4dDescriptor(l->ddstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->out_c, l->out_h, l->out_w); |
| | | cudnnSetFilter4dDescriptor(l->dweightDesc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, l->n, l->c, l->size, l->size); |
| | | |
| | | cudnnSetTensor4dDescriptor(l->srcTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->c, l->h, l->w); |
| | | cudnnSetTensor4dDescriptor(l->dstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->out_c, l->out_h, l->out_w); |
| | | cudnnSetFilter4dDescriptor(l->weightDesc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, l->n, l->c, l->size, l->size); |
| | | cudnnSetConvolution2dDescriptor(l->convDesc, l->pad, l->pad, l->stride, l->stride, 1, 1, CUDNN_CROSS_CORRELATION); |
| | | cudnnGetConvolutionForwardAlgorithm(cudnn_handle(), |
| | | l->srcTensorDesc, |
| | | l->weightDesc, |
| | | l->convDesc, |
| | | l->dstTensorDesc, |
| | | CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, |
| | | 0, |
| | | &l->fw_algo); |
| | | cudnnGetConvolutionBackwardDataAlgorithm(cudnn_handle(), |
| | | l->weightDesc, |
| | | l->ddstTensorDesc, |
| | | l->convDesc, |
| | | l->dsrcTensorDesc, |
| | | CUDNN_CONVOLUTION_BWD_DATA_PREFER_FASTEST, |
| | | 0, |
| | | &l->bd_algo); |
| | | cudnnGetConvolutionBackwardFilterAlgorithm(cudnn_handle(), |
| | | l->srcTensorDesc, |
| | | l->ddstTensorDesc, |
| | | l->convDesc, |
| | | l->dweightDesc, |
| | | CUDNN_CONVOLUTION_BWD_FILTER_PREFER_FASTEST, |
| | | 0, |
| | | &l->bf_algo); |
| | | } |
| | | #endif |
| | | #endif |
| | | |
| | | convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int padding, ACTIVATION activation, int batch_normalize, int binary, int xnor, int adam) |
| | | { |
| | | int i; |
| | | convolutional_layer l = {0}; |
| | |
| | | l.w = w; |
| | | l.c = c; |
| | | l.n = n; |
| | | l.binary = binary; |
| | | l.xnor = xnor; |
| | | l.batch = batch; |
| | | l.stride = stride; |
| | | l.size = size; |
| | | l.pad = pad; |
| | | l.pad = padding; |
| | | l.batch_normalize = batch_normalize; |
| | | |
| | | l.filters = calloc(c*n*size*size, sizeof(float)); |
| | | l.filter_updates = calloc(c*n*size*size, sizeof(float)); |
| | | l.weights = calloc(c*n*size*size, sizeof(float)); |
| | | l.weight_updates = calloc(c*n*size*size, sizeof(float)); |
| | | |
| | | l.biases = calloc(n, sizeof(float)); |
| | | l.bias_updates = calloc(n, sizeof(float)); |
| | | //float scale = 1./sqrt(size*size*c); |
| | | |
| | | // float scale = 1./sqrt(size*size*c); |
| | | float scale = sqrt(2./(size*size*c)); |
| | | for(i = 0; i < c*n*size*size; ++i) l.filters[i] = 2*scale*rand_uniform() - scale; |
| | | for(i = 0; i < n; ++i){ |
| | | l.biases[i] = scale; |
| | | } |
| | | for(i = 0; i < c*n*size*size; ++i) l.weights[i] = scale*rand_uniform(-1, 1); |
| | | int out_h = convolutional_out_height(l); |
| | | int out_w = convolutional_out_width(l); |
| | | l.out_h = out_h; |
| | |
| | | l.outputs = l.out_h * l.out_w * l.out_c; |
| | | l.inputs = l.w * l.h * l.c; |
| | | |
| | | l.col_image = calloc(out_h*out_w*size*size*c, sizeof(float)); |
| | | l.output = calloc(l.batch*out_h * out_w * n, sizeof(float)); |
| | | l.delta = calloc(l.batch*out_h * out_w * n, sizeof(float)); |
| | | |
| | | #ifdef GPU |
| | | l.filters_gpu = cuda_make_array(l.filters, c*n*size*size); |
| | | l.filter_updates_gpu = cuda_make_array(l.filter_updates, c*n*size*size); |
| | | l.forward = forward_convolutional_layer; |
| | | l.backward = backward_convolutional_layer; |
| | | l.update = update_convolutional_layer; |
| | | if(binary){ |
| | | l.binary_weights = calloc(c*n*size*size, sizeof(float)); |
| | | l.cweights = calloc(c*n*size*size, sizeof(char)); |
| | | l.scales = calloc(n, sizeof(float)); |
| | | } |
| | | if(xnor){ |
| | | l.binary_weights = calloc(c*n*size*size, sizeof(float)); |
| | | l.binary_input = calloc(l.inputs*l.batch, sizeof(float)); |
| | | } |
| | | |
| | | l.biases_gpu = cuda_make_array(l.biases, n); |
| | | l.bias_updates_gpu = cuda_make_array(l.bias_updates, n); |
| | | if(batch_normalize){ |
| | | l.scales = calloc(n, sizeof(float)); |
| | | l.scale_updates = calloc(n, sizeof(float)); |
| | | for(i = 0; i < n; ++i){ |
| | | l.scales[i] = 1; |
| | | } |
| | | |
| | | l.col_image_gpu = cuda_make_array(l.col_image, out_h*out_w*size*size*c); |
| | | l.delta_gpu = cuda_make_array(l.delta, l.batch*out_h*out_w*n); |
| | | l.output_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n); |
| | | #endif |
| | | l.mean = calloc(n, sizeof(float)); |
| | | l.variance = calloc(n, sizeof(float)); |
| | | |
| | | l.rolling_mean = calloc(n, sizeof(float)); |
| | | l.rolling_variance = calloc(n, sizeof(float)); |
| | | } |
| | | if(adam){ |
| | | l.adam = 1; |
| | | l.m = calloc(c*n*size*size, sizeof(float)); |
| | | l.v = calloc(c*n*size*size, sizeof(float)); |
| | | } |
| | | |
| | | #ifdef GPU |
| | | l.forward_gpu = forward_convolutional_layer_gpu; |
| | | l.backward_gpu = backward_convolutional_layer_gpu; |
| | | l.update_gpu = update_convolutional_layer_gpu; |
| | | |
| | | if(gpu_index >= 0){ |
| | | if (adam) { |
| | | l.m_gpu = cuda_make_array(l.m, c*n*size*size); |
| | | l.v_gpu = cuda_make_array(l.v, c*n*size*size); |
| | | } |
| | | |
| | | l.weights_gpu = cuda_make_array(l.weights, c*n*size*size); |
| | | l.weight_updates_gpu = cuda_make_array(l.weight_updates, c*n*size*size); |
| | | |
| | | l.biases_gpu = cuda_make_array(l.biases, n); |
| | | l.bias_updates_gpu = cuda_make_array(l.bias_updates, n); |
| | | |
| | | l.delta_gpu = cuda_make_array(l.delta, l.batch*out_h*out_w*n); |
| | | l.output_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n); |
| | | |
| | | if(binary){ |
| | | l.binary_weights_gpu = cuda_make_array(l.weights, c*n*size*size); |
| | | } |
| | | if(xnor){ |
| | | l.binary_weights_gpu = cuda_make_array(l.weights, c*n*size*size); |
| | | l.binary_input_gpu = cuda_make_array(0, l.inputs*l.batch); |
| | | } |
| | | |
| | | if(batch_normalize){ |
| | | l.mean_gpu = cuda_make_array(l.mean, n); |
| | | l.variance_gpu = cuda_make_array(l.variance, n); |
| | | |
| | | l.rolling_mean_gpu = cuda_make_array(l.mean, n); |
| | | l.rolling_variance_gpu = cuda_make_array(l.variance, n); |
| | | |
| | | l.mean_delta_gpu = cuda_make_array(l.mean, n); |
| | | l.variance_delta_gpu = cuda_make_array(l.variance, n); |
| | | |
| | | l.scales_gpu = cuda_make_array(l.scales, n); |
| | | l.scale_updates_gpu = cuda_make_array(l.scale_updates, n); |
| | | |
| | | l.x_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n); |
| | | l.x_norm_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n); |
| | | } |
| | | #ifdef CUDNN |
| | | cudnnCreateTensorDescriptor(&l.srcTensorDesc); |
| | | cudnnCreateTensorDescriptor(&l.dstTensorDesc); |
| | | cudnnCreateFilterDescriptor(&l.weightDesc); |
| | | cudnnCreateTensorDescriptor(&l.dsrcTensorDesc); |
| | | cudnnCreateTensorDescriptor(&l.ddstTensorDesc); |
| | | cudnnCreateFilterDescriptor(&l.dweightDesc); |
| | | cudnnCreateConvolutionDescriptor(&l.convDesc); |
| | | cudnn_convolutional_setup(&l); |
| | | #endif |
| | | } |
| | | #endif |
| | | l.workspace_size = get_workspace_size(l); |
| | | l.activation = activation; |
| | | |
| | | fprintf(stderr, "Convolutional Layer: %d x %d x %d image, %d filters -> %d x %d x %d image\n", h,w,c,n, out_h, out_w, n); |
| | |
| | | return l; |
| | | } |
| | | |
| | | void resize_convolutional_layer(convolutional_layer *l, int h, int w) |
| | | void denormalize_convolutional_layer(convolutional_layer l) |
| | | { |
| | | l->h = h; |
| | | int i, j; |
| | | for(i = 0; i < l.n; ++i){ |
| | | float scale = l.scales[i]/sqrt(l.rolling_variance[i] + .00001); |
| | | for(j = 0; j < l.c*l.size*l.size; ++j){ |
| | | l.weights[i*l.c*l.size*l.size + j] *= scale; |
| | | } |
| | | l.biases[i] -= l.rolling_mean[i] * scale; |
| | | l.scales[i] = 1; |
| | | l.rolling_mean[i] = 0; |
| | | l.rolling_variance[i] = 1; |
| | | } |
| | | } |
| | | |
| | | void test_convolutional_layer() |
| | | { |
| | | convolutional_layer l = make_convolutional_layer(1, 5, 5, 3, 2, 5, 2, 1, LEAKY, 1, 0, 0, 0); |
| | | l.batch_normalize = 1; |
| | | float data[] = {1,1,1,1,1, |
| | | 1,1,1,1,1, |
| | | 1,1,1,1,1, |
| | | 1,1,1,1,1, |
| | | 1,1,1,1,1, |
| | | 2,2,2,2,2, |
| | | 2,2,2,2,2, |
| | | 2,2,2,2,2, |
| | | 2,2,2,2,2, |
| | | 2,2,2,2,2, |
| | | 3,3,3,3,3, |
| | | 3,3,3,3,3, |
| | | 3,3,3,3,3, |
| | | 3,3,3,3,3, |
| | | 3,3,3,3,3}; |
| | | network_state state = {0}; |
| | | state.input = data; |
| | | forward_convolutional_layer(l, state); |
| | | } |
| | | |
| | | void resize_convolutional_layer(convolutional_layer *l, int w, int h) |
| | | { |
| | | l->w = w; |
| | | int out_h = convolutional_out_height(*l); |
| | | l->h = h; |
| | | int out_w = convolutional_out_width(*l); |
| | | int out_h = convolutional_out_height(*l); |
| | | |
| | | l->col_image = realloc(l->col_image, |
| | | out_h*out_w*l->size*l->size*l->c*sizeof(float)); |
| | | l->out_w = out_w; |
| | | l->out_h = out_h; |
| | | |
| | | l->outputs = l->out_h * l->out_w * l->out_c; |
| | | l->inputs = l->w * l->h * l->c; |
| | | |
| | | l->output = realloc(l->output, |
| | | l->batch*out_h * out_w * l->n*sizeof(float)); |
| | | l->batch*out_h * out_w * l->n*sizeof(float)); |
| | | l->delta = realloc(l->delta, |
| | | l->batch*out_h * out_w * l->n*sizeof(float)); |
| | | l->batch*out_h * out_w * l->n*sizeof(float)); |
| | | |
| | | #ifdef GPU |
| | | cuda_free(l->col_image_gpu); |
| | | #ifdef GPU |
| | | cuda_free(l->delta_gpu); |
| | | cuda_free(l->output_gpu); |
| | | |
| | | l->col_image_gpu = cuda_make_array(l->col_image, out_h*out_w*l->size*l->size*l->c); |
| | | l->delta_gpu = cuda_make_array(l->delta, l->batch*out_h*out_w*l->n); |
| | | l->output_gpu = cuda_make_array(l->output, l->batch*out_h*out_w*l->n); |
| | | #endif |
| | | l->delta_gpu = cuda_make_array(l->delta, l->batch*out_h*out_w*l->n); |
| | | l->output_gpu = cuda_make_array(l->output, l->batch*out_h*out_w*l->n); |
| | | |
| | | if(l->batch_normalize){ |
| | | cuda_free(l->x_gpu); |
| | | cuda_free(l->x_norm_gpu); |
| | | |
| | | l->x_gpu = cuda_make_array(l->output, l->batch*l->outputs); |
| | | l->x_norm_gpu = cuda_make_array(l->output, l->batch*l->outputs); |
| | | } |
| | | #ifdef CUDNN |
| | | cudnn_convolutional_setup(l); |
| | | #endif |
| | | #endif |
| | | l->workspace_size = get_workspace_size(*l); |
| | | } |
| | | |
| | | void bias_output(float *output, float *biases, int batch, int n, int size) |
| | | void add_bias(float *output, float *biases, int batch, int n, int size) |
| | | { |
| | | int i,j,b; |
| | | for(b = 0; b < batch; ++b){ |
| | | for(i = 0; i < n; ++i){ |
| | | for(j = 0; j < size; ++j){ |
| | | output[(b*n + i)*size + j] = biases[i]; |
| | | output[(b*n + i)*size + j] += biases[i]; |
| | | } |
| | | } |
| | | } |
| | | } |
| | | |
| | | void scale_bias(float *output, float *scales, int batch, int n, int size) |
| | | { |
| | | int i,j,b; |
| | | for(b = 0; b < batch; ++b){ |
| | | for(i = 0; i < n; ++i){ |
| | | for(j = 0; j < size; ++j){ |
| | | output[(b*n + i)*size + j] *= scales[i]; |
| | | } |
| | | } |
| | | } |
| | |
| | | } |
| | | } |
| | | |
| | | |
| | | void forward_convolutional_layer(const convolutional_layer l, network_state state) |
| | | void forward_convolutional_layer(convolutional_layer l, network_state state) |
| | | { |
| | | int out_h = convolutional_out_height(l); |
| | | int out_w = convolutional_out_width(l); |
| | | int i; |
| | | |
| | | bias_output(l.output, l.biases, l.batch, l.n, out_h*out_w); |
| | | |
| | | fill_cpu(l.outputs*l.batch, 0, l.output, 1); |
| | | |
| | | /* |
| | | if(l.binary){ |
| | | binarize_weights(l.weights, l.n, l.c*l.size*l.size, l.binary_weights); |
| | | binarize_weights2(l.weights, l.n, l.c*l.size*l.size, l.cweights, l.scales); |
| | | swap_binary(&l); |
| | | } |
| | | */ |
| | | |
| | | /* |
| | | if(l.binary){ |
| | | int m = l.n; |
| | | int k = l.size*l.size*l.c; |
| | | int n = out_h*out_w; |
| | | |
| | | char *a = l.cweights; |
| | | float *b = state.workspace; |
| | | float *c = l.output; |
| | | |
| | | for(i = 0; i < l.batch; ++i){ |
| | | im2col_cpu(state.input, l.c, l.h, l.w, |
| | | l.size, l.stride, l.pad, b); |
| | | gemm_bin(m,n,k,1,a,k,b,n,c,n); |
| | | c += n*m; |
| | | state.input += l.c*l.h*l.w; |
| | | } |
| | | scale_bias(l.output, l.scales, l.batch, l.n, out_h*out_w); |
| | | add_bias(l.output, l.biases, l.batch, l.n, out_h*out_w); |
| | | activate_array(l.output, m*n*l.batch, l.activation); |
| | | return; |
| | | } |
| | | */ |
| | | |
| | | if(l.xnor){ |
| | | binarize_weights(l.weights, l.n, l.c*l.size*l.size, l.binary_weights); |
| | | swap_binary(&l); |
| | | binarize_cpu(state.input, l.c*l.h*l.w*l.batch, l.binary_input); |
| | | state.input = l.binary_input; |
| | | } |
| | | |
| | | int m = l.n; |
| | | int k = l.size*l.size*l.c; |
| | | int n = out_h*out_w; |
| | | |
| | | float *a = l.filters; |
| | | float *b = l.col_image; |
| | | float *c = l.output; |
| | | if (l.xnor && l.c%32 == 0 && AI2) { |
| | | forward_xnor_layer(l, state); |
| | | printf("xnor\n"); |
| | | } else { |
| | | |
| | | for(i = 0; i < l.batch; ++i){ |
| | | im2col_cpu(state.input, l.c, l.h, l.w, |
| | | l.size, l.stride, l.pad, b); |
| | | gemm(0,0,m,n,k,1,a,k,b,n,1,c,n); |
| | | c += n*m; |
| | | state.input += l.c*l.h*l.w; |
| | | float *a = l.weights; |
| | | float *b = state.workspace; |
| | | float *c = l.output; |
| | | |
| | | for(i = 0; i < l.batch; ++i){ |
| | | im2col_cpu(state.input, l.c, l.h, l.w, |
| | | l.size, l.stride, l.pad, b); |
| | | gemm(0,0,m,n,k,1,a,k,b,n,1,c,n); |
| | | c += n*m; |
| | | state.input += l.c*l.h*l.w; |
| | | } |
| | | } |
| | | |
| | | if(l.batch_normalize){ |
| | | forward_batchnorm_layer(l, state); |
| | | } |
| | | add_bias(l.output, l.biases, l.batch, l.n, out_h*out_w); |
| | | |
| | | activate_array(l.output, m*n*l.batch, l.activation); |
| | | if(l.binary || l.xnor) swap_binary(&l); |
| | | } |
| | | |
| | | void backward_convolutional_layer(convolutional_layer l, network_state state) |
| | |
| | | gradient_array(l.output, m*k*l.batch, l.activation, l.delta); |
| | | backward_bias(l.bias_updates, l.delta, l.batch, l.n, k); |
| | | |
| | | if(state.delta) memset(state.delta, 0, l.batch*l.h*l.w*l.c*sizeof(float)); |
| | | |
| | | for(i = 0; i < l.batch; ++i){ |
| | | float *a = l.delta + i*m*k; |
| | | float *b = l.col_image; |
| | | float *c = l.filter_updates; |
| | | float *b = state.workspace; |
| | | float *c = l.weight_updates; |
| | | |
| | | float *im = state.input+i*l.c*l.h*l.w; |
| | | |
| | |
| | | gemm(0,1,m,n,k,1,a,k,b,k,1,c,n); |
| | | |
| | | if(state.delta){ |
| | | a = l.filters; |
| | | a = l.weights; |
| | | b = l.delta + i*m*k; |
| | | c = l.col_image; |
| | | c = state.workspace; |
| | | |
| | | gemm(1,0,n,k,m,1,a,n,b,k,0,c,k); |
| | | |
| | | col2im_cpu(l.col_image, l.c, l.h, l.w, l.size, l.stride, l.pad, state.delta+i*l.c*l.h*l.w); |
| | | col2im_cpu(state.workspace, l.c, l.h, l.w, l.size, l.stride, l.pad, state.delta+i*l.c*l.h*l.w); |
| | | } |
| | | } |
| | | } |
| | |
| | | axpy_cpu(l.n, learning_rate/batch, l.bias_updates, 1, l.biases, 1); |
| | | scal_cpu(l.n, momentum, l.bias_updates, 1); |
| | | |
| | | axpy_cpu(size, -decay*batch, l.filters, 1, l.filter_updates, 1); |
| | | axpy_cpu(size, learning_rate/batch, l.filter_updates, 1, l.filters, 1); |
| | | scal_cpu(size, momentum, l.filter_updates, 1); |
| | | if(l.scales){ |
| | | axpy_cpu(l.n, learning_rate/batch, l.scale_updates, 1, l.scales, 1); |
| | | scal_cpu(l.n, momentum, l.scale_updates, 1); |
| | | } |
| | | |
| | | axpy_cpu(size, -decay*batch, l.weights, 1, l.weight_updates, 1); |
| | | axpy_cpu(size, learning_rate/batch, l.weight_updates, 1, l.weights, 1); |
| | | scal_cpu(size, momentum, l.weight_updates, 1); |
| | | } |
| | | |
| | | |
| | | image get_convolutional_filter(convolutional_layer l, int i) |
| | | image get_convolutional_weight(convolutional_layer l, int i) |
| | | { |
| | | int h = l.size; |
| | | int w = l.size; |
| | | int c = l.c; |
| | | return float_to_image(w,h,c,l.filters+i*h*w*c); |
| | | return float_to_image(w,h,c,l.weights+i*h*w*c); |
| | | } |
| | | |
| | | void rgbgr_filters(convolutional_layer l) |
| | | void rgbgr_weights(convolutional_layer l) |
| | | { |
| | | int i; |
| | | for(i = 0; i < l.n; ++i){ |
| | | image im = get_convolutional_filter(l, i); |
| | | image im = get_convolutional_weight(l, i); |
| | | if (im.c == 3) { |
| | | rgbgr_image(im); |
| | | } |
| | | } |
| | | } |
| | | |
| | | image *get_filters(convolutional_layer l) |
| | | void rescale_weights(convolutional_layer l, float scale, float trans) |
| | | { |
| | | image *filters = calloc(l.n, sizeof(image)); |
| | | int i; |
| | | for(i = 0; i < l.n; ++i){ |
| | | filters[i] = copy_image(get_convolutional_filter(l, i)); |
| | | image im = get_convolutional_weight(l, i); |
| | | if (im.c == 3) { |
| | | scale_image(im, scale); |
| | | float sum = sum_array(im.data, im.w*im.h*im.c); |
| | | l.biases[i] += sum*trans; |
| | | } |
| | | } |
| | | return filters; |
| | | } |
| | | |
| | | image *visualize_convolutional_layer(convolutional_layer l, char *window, image *prev_filters) |
| | | image *get_weights(convolutional_layer l) |
| | | { |
| | | image *single_filters = get_filters(l); |
| | | show_images(single_filters, l.n, window); |
| | | image *weights = calloc(l.n, sizeof(image)); |
| | | int i; |
| | | for(i = 0; i < l.n; ++i){ |
| | | weights[i] = copy_image(get_convolutional_weight(l, i)); |
| | | //normalize_image(weights[i]); |
| | | } |
| | | return weights; |
| | | } |
| | | |
| | | image *visualize_convolutional_layer(convolutional_layer l, char *window, image *prev_weights) |
| | | { |
| | | image *single_weights = get_weights(l); |
| | | show_images(single_weights, l.n, window); |
| | | |
| | | image delta = get_convolutional_image(l); |
| | | image dc = collapse_image_layers(delta, 1); |
| | |
| | | //show_image(dc, buff); |
| | | //save_image(dc, buff); |
| | | free_image(dc); |
| | | return single_filters; |
| | | return single_weights; |
| | | } |
| | | |