| | |
| | | #include <stdlib.h> |
| | | #include <stdio.h> |
| | | #include <math.h> |
| | | #include <float.h> |
| | | #include <string.h> |
| | | |
| | | #if defined(_OPENMP) |
| | | #include <omp.h> |
| | |
| | | //---------------------------- |
| | | |
| | | |
| | | #if (defined(__AVX__) && defined(__x86_64__)) || defined(_WIN64) |
| | | void transpose_8x8_bits_my(unsigned char *A, unsigned char *B, int lda, int ldb) |
| | | { |
| | | unsigned x, y, t; |
| | | for (y = 0; y < 8; ++y) { |
| | | for (x = 0; x < 8; ++x) { |
| | | if (A[y * lda] & (1 << x)) B[x * ldb] |= 1 << y; |
| | | } |
| | | } |
| | | } |
| | | |
| | | #define OSXSAVEFlag (1UL<<27) |
| | | #define AVXFlag ((1UL<<28)|OSXSAVEFlag) |
| | | #define FMAFlag ((1UL<<12)|AVXFlag|OSXSAVEFlag) |
| | | #define CLMULFlag ((1UL<< 1)|AVXFlag|OSXSAVEFlag) |
| | | #define VAESFlag ((1UL<<25)|AVXFlag|OSXSAVEFlag) |
| | | unsigned char reverse_byte_1(char a) |
| | | { |
| | | return ((a & 0x1) << 7) | ((a & 0x2) << 5) | |
| | | ((a & 0x4) << 3) | ((a & 0x8) << 1) | |
| | | ((a & 0x10) >> 1) | ((a & 0x20) >> 3) | |
| | | ((a & 0x40) >> 5) | ((a & 0x80) >> 7); |
| | | } |
| | | |
| | | unsigned char reverse_byte_2(unsigned char a) |
| | | { |
| | | return ((a * 0x0802LU & 0x22110LU) | (a * 0x8020LU & 0x88440LU)) * 0x10101LU >> 16; |
| | | } |
| | | |
| | | static unsigned char lookup[16] = { |
| | | 0x0, 0x8, 0x4, 0xc, 0x2, 0xa, 0x6, 0xe, |
| | | 0x1, 0x9, 0x5, 0xd, 0x3, 0xb, 0x7, 0xf, }; |
| | | |
| | | unsigned char reverse_byte(unsigned char n) { |
| | | // Reverse the top and bottom nibble then swap them. |
| | | return (lookup[n & 0b1111] << 4) | lookup[n >> 4]; |
| | | } |
| | | |
| | | |
| | | void transpose8rS32_reversed_diagonale(unsigned char* A, int m, int n, unsigned char* B) |
| | | { |
| | | unsigned x, y, t; |
| | | |
| | | // Load the array and pack it into x and y. |
| | | x = (A[0] << 24) | (A[m] << 16) | (A[2 * m] << 8) | A[3 * m]; |
| | | y = (A[4 * m] << 24) | (A[5 * m] << 16) | (A[6 * m] << 8) | A[7 * m]; |
| | | |
| | | t = (x ^ (x >> 7)) & 0x00AA00AA; x = x ^ t ^ (t << 7); |
| | | t = (y ^ (y >> 7)) & 0x00AA00AA; y = y ^ t ^ (t << 7); |
| | | |
| | | t = (x ^ (x >> 14)) & 0x0000CCCC; x = x ^ t ^ (t << 14); |
| | | t = (y ^ (y >> 14)) & 0x0000CCCC; y = y ^ t ^ (t << 14); |
| | | |
| | | t = (x & 0xF0F0F0F0) | ((y >> 4) & 0x0F0F0F0F); |
| | | y = ((x << 4) & 0xF0F0F0F0) | (y & 0x0F0F0F0F); |
| | | x = t; |
| | | |
| | | B[7 * n] = reverse_byte(x >> 24); B[6 * n] = reverse_byte(x >> 16); B[5 * n] = reverse_byte(x >> 8); B[4 * n] = reverse_byte(x); |
| | | B[3 * n] = reverse_byte(y >> 24); B[2 * n] = reverse_byte(y >> 16); B[1 * n] = reverse_byte(y >> 8); B[0 * n] = reverse_byte(y); |
| | | } |
| | | |
| | | void transpose_bin(char *A, char *B, const int n, const int m, |
| | | const int lda, const int ldb, const int block_size) |
| | | { |
| | | int i; |
| | | #pragma omp parallel for |
| | | for (i = 0; i < n; i += 8) { |
| | | int j; |
| | | for (j = 0; j < m - 8; j += 8) { |
| | | int a_index = i*lda + j; |
| | | int b_index = j*ldb + i; |
| | | //transpose_8x8_bits_my(&A[a_index/8], &B[b_index/8], lda/8, ldb/8); |
| | | transpose8rS32_reversed_diagonale(&A[a_index / 8], lda / 8, ldb / 8, &B[b_index / 8]); |
| | | } |
| | | for (; j < m; ++j) { |
| | | if (get_bit(A, i*lda + j)) set_bit(B, j*ldb + i); |
| | | } |
| | | } |
| | | } |
| | | |
| | | //---------------------------- |
| | | |
| | | |
| | | #if (defined(__AVX__) && defined(__x86_64__)) || defined(_WIN64) |
| | | |
| | | #ifdef _WIN64 |
| | | #include <intrin.h> |
| | |
| | | static inline __int32 _mm256_extract_epi32(__m256i a, const int index) { |
| | | return a.m256i_i32[index]; |
| | | } |
| | | |
| | | #endif |
| | | |
| | | static inline float _castu32_f32(uint32_t a) { |
| | |
| | | } |
| | | |
| | | static inline float _mm256_extract_float32(__m256 a, const int index) { |
| | | return _castu32_f32(_mm256_extract_epi32(_mm256_castps_si256(a), index)); |
| | | return a.m256_f32[index]; |
| | | } |
| | | |
| | | #else // Linux GCC/Clang |
| | |
| | | abcd[2] = ecx; |
| | | abcd[3] = edx; |
| | | } |
| | | |
| | | #endif |
| | | |
| | | int simd_detect_x86(unsigned int idFeature) |
| | | { |
| | | uint32_t regs[4]; // EAX, EBX, ECX, EDX; |
| | | |
| | | |
| | | #ifdef _WIN32 |
| | | __cpuid(regs, 0); |
| | | if (regs[0] > 1U) __cpuid(regs, 1); |
| | | // Windows |
| | | #define cpuid(info, x) __cpuidex(info, x, 0) |
| | | #else |
| | | __get_cpuid(0, ®s[0], ®s[1], ®s[2], ®s[3]); |
| | | if(regs[0] > 1U) __get_cpuid(1, ®s[0], ®s[1], ®s[2], ®s[3]); |
| | | // GCC Intrinsics |
| | | void cpuid(int info[4], int InfoType) { |
| | | __cpuid_count(InfoType, 0, info[0], info[1], info[2], info[3]); |
| | | } |
| | | #endif |
| | | |
| | | if ((regs[2] & idFeature) != idFeature) |
| | | return 0; |
| | | return 1; |
| | | |
| | | // Misc. |
| | | static int HW_MMX, HW_x64, HW_RDRAND, HW_BMI1, HW_BMI2, HW_ADX, HW_PREFETCHWT1; |
| | | static int HW_ABM; // Advanced Bit Manipulation |
| | | |
| | | // SIMD: 128-bit |
| | | static int HW_SSE, HW_SSE2, HW_SSE3, HW_SSSE3, HW_SSE41, HW_SSE42, HW_SSE4a, HW_AES, HW_SHA; |
| | | |
| | | // SIMD: 256-bit |
| | | static int HW_AVX, HW_XOP, HW_FMA3, HW_FMA4, HW_AVX2; |
| | | |
| | | // SIMD: 512-bit |
| | | static int HW_AVX512F; // AVX512 Foundation |
| | | static int HW_AVX512CD; // AVX512 Conflict Detection |
| | | static int HW_AVX512PF; // AVX512 Prefetch |
| | | static int HW_AVX512ER; // AVX512 Exponential + Reciprocal |
| | | static int HW_AVX512VL; // AVX512 Vector Length Extensions |
| | | static int HW_AVX512BW; // AVX512 Byte + Word |
| | | static int HW_AVX512DQ; // AVX512 Doubleword + Quadword |
| | | static int HW_AVX512IFMA; // AVX512 Integer 52-bit Fused Multiply-Add |
| | | static int HW_AVX512VBMI; // AVX512 Vector Byte Manipulation Instructions |
| | | |
| | | // https://stackoverflow.com/questions/6121792/how-to-check-if-a-cpu-supports-the-sse3-instruction-set |
| | | void check_cpu_features(void) { |
| | | int info[4]; |
| | | cpuid(info, 0); |
| | | int nIds = info[0]; |
| | | |
| | | cpuid(info, 0x80000000); |
| | | unsigned nExIds = info[0]; |
| | | |
| | | // Detect Features |
| | | if (nIds >= 0x00000001) { |
| | | cpuid(info, 0x00000001); |
| | | HW_MMX = (info[3] & ((int)1 << 23)) != 0; |
| | | HW_SSE = (info[3] & ((int)1 << 25)) != 0; |
| | | HW_SSE2 = (info[3] & ((int)1 << 26)) != 0; |
| | | HW_SSE3 = (info[2] & ((int)1 << 0)) != 0; |
| | | |
| | | HW_SSSE3 = (info[2] & ((int)1 << 9)) != 0; |
| | | HW_SSE41 = (info[2] & ((int)1 << 19)) != 0; |
| | | HW_SSE42 = (info[2] & ((int)1 << 20)) != 0; |
| | | HW_AES = (info[2] & ((int)1 << 25)) != 0; |
| | | |
| | | HW_AVX = (info[2] & ((int)1 << 28)) != 0; |
| | | HW_FMA3 = (info[2] & ((int)1 << 12)) != 0; |
| | | |
| | | HW_RDRAND = (info[2] & ((int)1 << 30)) != 0; |
| | | } |
| | | if (nIds >= 0x00000007) { |
| | | cpuid(info, 0x00000007); |
| | | HW_AVX2 = (info[1] & ((int)1 << 5)) != 0; |
| | | |
| | | HW_BMI1 = (info[1] & ((int)1 << 3)) != 0; |
| | | HW_BMI2 = (info[1] & ((int)1 << 8)) != 0; |
| | | HW_ADX = (info[1] & ((int)1 << 19)) != 0; |
| | | HW_SHA = (info[1] & ((int)1 << 29)) != 0; |
| | | HW_PREFETCHWT1 = (info[2] & ((int)1 << 0)) != 0; |
| | | |
| | | HW_AVX512F = (info[1] & ((int)1 << 16)) != 0; |
| | | HW_AVX512CD = (info[1] & ((int)1 << 28)) != 0; |
| | | HW_AVX512PF = (info[1] & ((int)1 << 26)) != 0; |
| | | HW_AVX512ER = (info[1] & ((int)1 << 27)) != 0; |
| | | HW_AVX512VL = (info[1] & ((int)1 << 31)) != 0; |
| | | HW_AVX512BW = (info[1] & ((int)1 << 30)) != 0; |
| | | HW_AVX512DQ = (info[1] & ((int)1 << 17)) != 0; |
| | | HW_AVX512IFMA = (info[1] & ((int)1 << 21)) != 0; |
| | | HW_AVX512VBMI = (info[2] & ((int)1 << 1)) != 0; |
| | | } |
| | | if (nExIds >= 0x80000001) { |
| | | cpuid(info, 0x80000001); |
| | | HW_x64 = (info[3] & ((int)1 << 29)) != 0; |
| | | HW_ABM = (info[2] & ((int)1 << 5)) != 0; |
| | | HW_SSE4a = (info[2] & ((int)1 << 6)) != 0; |
| | | HW_FMA4 = (info[2] & ((int)1 << 16)) != 0; |
| | | HW_XOP = (info[2] & ((int)1 << 11)) != 0; |
| | | } |
| | | } |
| | | |
| | | int is_fma_avx() { |
| | | int is_avx() { |
| | | static int result = -1; |
| | | if (result == -1) { |
| | | result = simd_detect_x86(AVXFlag); |
| | | check_cpu_features(); |
| | | result = HW_AVX; |
| | | if (result == 1) printf(" Used AVX \n"); |
| | | else printf(" Not used AVX \n"); |
| | | } |
| | | return result; |
| | | } |
| | | |
| | | int is_fma_avx2() { |
| | | static int result = -1; |
| | | if (result == -1) { |
| | | check_cpu_features(); |
| | | result = HW_FMA3 && HW_AVX2; |
| | | if (result == 1) printf(" Used FMA & AVX2 \n"); |
| | | else printf(" Not used FMA & AVX2 \n"); |
| | | } |
| | | return result; |
| | | } |
| | | |
| | | // https://software.intel.com/sites/landingpage/IntrinsicsGuide |
| | | void gemm_nn(int M, int N, int K, float ALPHA, |
| | | float *A, int lda, |
| | |
| | | float *C, int ldc) |
| | | { |
| | | int i, j, k; |
| | | if (is_fma_avx() == 1) { // AVX |
| | | if (is_avx() == 1) { // AVX |
| | | for (i = 0; i < M; ++i) { |
| | | for (k = 0; k < K; ++k) { |
| | | float A_PART = ALPHA*A[i*lda + k]; |
| | |
| | | static int max_num_threads = 0; |
| | | if (max_num_threads == 0) { |
| | | max_num_threads = omp_get_max_threads(); |
| | | omp_set_num_threads(4);// max_num_threads / 2); |
| | | //omp_set_num_threads( max_num_threads / 2); |
| | | } |
| | | #endif |
| | | |
| | |
| | | int channels_col = channels * ksize * ksize; |
| | | |
| | | // optimized version |
| | | if (height_col == height && width_col == width && stride == 1 && pad == 1 && is_fma_avx()) |
| | | if (height_col == height && width_col == width && stride == 1 && pad == 1 && is_fma_avx2()) |
| | | { |
| | | #pragma omp parallel for |
| | | for (c = 0; c < channels_col; ++c) { |
| | |
| | | } |
| | | } |
| | | |
| | | void transpose_8x8_bits(unsigned char A[8], unsigned char B[8], int m, int n) |
| | | //From Berkeley Vision's Caffe! |
| | | //https://github.com/BVLC/caffe/blob/master/LICENSE |
| | | void im2col_cpu_custom_align(float* data_im, |
| | | int channels, int height, int width, |
| | | int ksize, int stride, int pad, float* data_col, int bit_align) |
| | | { |
| | | unsigned x, y, t; |
| | | int c, h, w; |
| | | int height_col = (height + 2 * pad - ksize) / stride + 1; |
| | | int width_col = (width + 2 * pad - ksize) / stride + 1; |
| | | int channels_col = channels * ksize * ksize; |
| | | |
| | | // Load the array and pack it into x and y. |
| | | // optimized version |
| | | if (height_col == height && width_col == width && stride == 1 && pad == 1 && is_fma_avx2()) |
| | | { |
| | | int new_ldb = bit_align; |
| | | |
| | | x = (A[0] << 24) | (A[m] << 16) | (A[2 * m] << 8) | A[3 * m]; |
| | | y = (A[4 * m] << 24) | (A[5 * m] << 16) | (A[6 * m] << 8) | A[7 * m]; |
| | | #pragma omp parallel for |
| | | for (c = 0; c < channels_col; ++c) { |
| | | int w_offset = c % ksize; |
| | | int h_offset = (c / ksize) % ksize; |
| | | int c_im = c / ksize / ksize; |
| | | for (h = pad; h < height_col - pad; ++h) { |
| | | for (w = pad; w < width_col - pad - 8; w += 8) { |
| | | int im_row = h_offset + h - pad; |
| | | int im_col = w_offset + w - pad; |
| | | //int col_index = (c * height_col + h) * width_col + w; |
| | | int col_index = c * new_ldb + h * width_col + w; |
| | | |
| | | t = (x ^ (x >> 7)) & 0x00AA00AA; x = x ^ t ^ (t << 7); |
| | | t = (y ^ (y >> 7)) & 0x00AA00AA; y = y ^ t ^ (t << 7); |
| | | //data_col[col_index] = data_im[im_col + width*(im_row + height*c_im)]; |
| | | __m256 src256 = _mm256_loadu_ps((float *)(&data_im[im_col + width*(im_row + height*c_im)])); |
| | | _mm256_storeu_ps(&data_col[col_index], src256); |
| | | } |
| | | |
| | | t = (x ^ (x >> 14)) & 0x0000CCCC; x = x ^ t ^ (t << 14); |
| | | t = (y ^ (y >> 14)) & 0x0000CCCC; y = y ^ t ^ (t << 14); |
| | | for (; w < width_col - pad; ++w) { |
| | | int im_row = h_offset + h - pad; |
| | | int im_col = w_offset + w - pad; |
| | | //int col_index = (c * height_col + h) * width_col + w; |
| | | int col_index = c * new_ldb + h * width_col + w; |
| | | data_col[col_index] = data_im[im_col + width*(im_row + height*c_im)]; |
| | | } |
| | | } |
| | | |
| | | t = (x & 0xF0F0F0F0) | ((y >> 4) & 0x0F0F0F0F); |
| | | y = ((x << 4) & 0xF0F0F0F0) | (y & 0x0F0F0F0F); |
| | | x = t; |
| | | { |
| | | w = 0; |
| | | for (h = 0; h < height_col; ++h) { |
| | | int im_row = h_offset + h; |
| | | int im_col = w_offset + w; |
| | | //int col_index = (c * height_col + h) * width_col + w; |
| | | int col_index = c * new_ldb + h * width_col + w; |
| | | data_col[col_index] = im2col_get_pixel(data_im, height, width, channels, im_row, im_col, c_im, pad); |
| | | } |
| | | } |
| | | |
| | | B[0] = x >> 24; B[n] = x >> 16; B[2 * n] = x >> 8; B[3 * n] = x; |
| | | B[4 * n] = y >> 24; B[5 * n] = y >> 16; B[6 * n] = y >> 8; B[7 * n] = y; |
| | | { |
| | | w = width_col - 1; |
| | | for (h = 0; h < height_col; ++h) { |
| | | int im_row = h_offset + h; |
| | | int im_col = w_offset + w; |
| | | //int col_index = (c * height_col + h) * width_col + w; |
| | | int col_index = c * new_ldb + h * width_col + w; |
| | | data_col[col_index] = im2col_get_pixel(data_im, height, width, channels, im_row, im_col, c_im, pad); |
| | | } |
| | | } |
| | | |
| | | { |
| | | h = 0; |
| | | for (w = 0; w < width_col; ++w) { |
| | | int im_row = h_offset + h; |
| | | int im_col = w_offset + w; |
| | | //int col_index = (c * height_col + h) * width_col + w; |
| | | int col_index = c * new_ldb + h * width_col + w; |
| | | data_col[col_index] = im2col_get_pixel(data_im, height, width, channels, im_row, im_col, c_im, pad); |
| | | } |
| | | } |
| | | |
| | | { |
| | | h = height_col - 1; |
| | | for (w = 0; w < width_col; ++w) { |
| | | int im_row = h_offset + h; |
| | | int im_col = w_offset + w; |
| | | //int col_index = (c * height_col + h) * width_col + w; |
| | | int col_index = c * new_ldb + h * width_col + w; |
| | | data_col[col_index] = im2col_get_pixel(data_im, height, width, channels, im_row, im_col, c_im, pad); |
| | | } |
| | | } |
| | | } |
| | | |
| | | } |
| | | else { |
| | | printf("\n Error: is no non-optimized version \n"); |
| | | //im2col_cpu(data_im, channels, height, width, ksize, stride, pad, data_col); // must be aligned for transpose after float_to_bin |
| | | // float_to_bit(b, t_input, src_size); |
| | | // transpose_bin(t_input, *t_bit_input, k, n, bit_align, new_ldb, 8); |
| | | } |
| | | } |
| | | |
| | | |
| | | //From Berkeley Vision's Caffe! |
| | | //https://github.com/BVLC/caffe/blob/master/LICENSE |
| | | void im2col_cpu_custom_bin(float* data_im, |
| | | int channels, int height, int width, |
| | | int ksize, int stride, int pad, float* data_col, int bit_align) |
| | | { |
| | | int c, h, w; |
| | | int height_col = (height + 2 * pad - ksize) / stride + 1; |
| | | int width_col = (width + 2 * pad - ksize) / stride + 1; |
| | | int channels_col = channels * ksize * ksize; |
| | | |
| | | // optimized version |
| | | if (height_col == height && width_col == width && stride == 1 && pad == 1 && is_fma_avx2()) |
| | | { |
| | | __m256i all256_sing1 = _mm256_set_epi32(0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000); |
| | | __m256 float_zero256 = _mm256_set1_ps(0.00); |
| | | |
| | | int new_ldb = bit_align; |
| | | |
| | | #pragma omp parallel for |
| | | for (c = 0; c < channels_col; ++c) { |
| | | int w_offset = c % ksize; |
| | | int h_offset = (c / ksize) % ksize; |
| | | int c_im = c / ksize / ksize; |
| | | for (h = pad; h < height_col - pad; ++h) { |
| | | for (w = pad; w < width_col - pad - 8; w += 8) { |
| | | int im_row = h_offset + h - pad; |
| | | int im_col = w_offset + w - pad; |
| | | //int col_index = (c * height_col + h) * width_col + w; |
| | | int col_index = c * new_ldb + h * width_col + w; |
| | | |
| | | //__m256i src256 = _mm256_loadu_si256((__m256i *)(&data_im[im_col + width*(im_row + height*c_im)])); |
| | | //__m256i result256 = _mm256_and_si256(src256, all256_sing1); // check sign in 8 x 32-bit floats |
| | | //uint16_t mask = _mm256_movemask_ps(_mm256_castsi256_ps(result256)); // (val >= 0) ? 0 : 1 |
| | | //mask = ~mask; // inverse mask, (val >= 0) ? 1 : 0 |
| | | |
| | | __m256 src256 = _mm256_loadu_ps((float *)(&data_im[im_col + width*(im_row + height*c_im)])); |
| | | __m256 result256 = _mm256_cmp_ps(src256, float_zero256, _CMP_GT_OS); |
| | | uint16_t mask = _mm256_movemask_ps(result256); // (val > 0) ? 0 : 1 |
| | | |
| | | uint16_t *dst_ptr = &((unsigned char*)data_col)[col_index / 8]; |
| | | *dst_ptr |= (mask << (col_index % 8)); |
| | | } |
| | | |
| | | for (; w < width_col - pad; ++w) { |
| | | int im_row = h_offset + h - pad; |
| | | int im_col = w_offset + w - pad; |
| | | //int col_index = (c * height_col + h) * width_col + w; |
| | | int col_index = c * new_ldb + h * width_col + w; |
| | | |
| | | //data_col[col_index] = data_im[im_col + width*(im_row + height*c_im)]; |
| | | float val = data_im[im_col + width*(im_row + height*c_im)]; |
| | | if(val > 0) set_bit(data_col, col_index); |
| | | } |
| | | } |
| | | |
| | | { |
| | | w = 0; |
| | | for (h = 0; h < height_col; ++h) { |
| | | int im_row = h_offset + h; |
| | | int im_col = w_offset + w; |
| | | //int col_index = (c * height_col + h) * width_col + w; |
| | | int col_index = c * new_ldb + h * width_col + w; |
| | | |
| | | //data_col[col_index] = im2col_get_pixel(data_im, height, width, channels, im_row, im_col, c_im, pad); |
| | | float val = im2col_get_pixel(data_im, height, width, channels, im_row, im_col, c_im, pad); |
| | | if (val > 0) set_bit(data_col, col_index); |
| | | } |
| | | } |
| | | |
| | | { |
| | | w = width_col - 1; |
| | | for (h = 0; h < height_col; ++h) { |
| | | int im_row = h_offset + h; |
| | | int im_col = w_offset + w; |
| | | //int col_index = (c * height_col + h) * width_col + w; |
| | | int col_index = c * new_ldb + h * width_col + w; |
| | | |
| | | //data_col[col_index] = im2col_get_pixel(data_im, height, width, channels, im_row, im_col, c_im, pad); |
| | | float val = im2col_get_pixel(data_im, height, width, channels, im_row, im_col, c_im, pad); |
| | | if (val > 0) set_bit(data_col, col_index); |
| | | } |
| | | } |
| | | |
| | | { |
| | | h = 0; |
| | | for (w = 0; w < width_col; ++w) { |
| | | int im_row = h_offset + h; |
| | | int im_col = w_offset + w; |
| | | //int col_index = (c * height_col + h) * width_col + w; |
| | | int col_index = c * new_ldb + h * width_col + w; |
| | | |
| | | //data_col[col_index] = im2col_get_pixel(data_im, height, width, channels, im_row, im_col, c_im, pad); |
| | | float val = im2col_get_pixel(data_im, height, width, channels, im_row, im_col, c_im, pad); |
| | | if (val > 0) set_bit(data_col, col_index); |
| | | } |
| | | } |
| | | |
| | | { |
| | | h = height_col - 1; |
| | | for (w = 0; w < width_col; ++w) { |
| | | int im_row = h_offset + h; |
| | | int im_col = w_offset + w; |
| | | //int col_index = (c * height_col + h) * width_col + w; |
| | | int col_index = c * new_ldb + h * width_col + w; |
| | | |
| | | //data_col[col_index] = im2col_get_pixel(data_im, height, width, channels, im_row, im_col, c_im, pad); |
| | | float val = im2col_get_pixel(data_im, height, width, channels, im_row, im_col, c_im, pad); |
| | | if (val > 0) set_bit(data_col, col_index); |
| | | } |
| | | } |
| | | } |
| | | |
| | | } |
| | | else { |
| | | printf("\n Error: is no non-optimized version \n"); |
| | | //im2col_cpu(data_im, channels, height, width, ksize, stride, pad, data_col); // must be aligned for transpose after float_to_bin |
| | | // float_to_bit(b, t_input, src_size); |
| | | // transpose_bin(t_input, *t_bit_input, k, n, bit_align, new_ldb, 8); |
| | | } |
| | | } |
| | | |
| | | |
| | | void activate_array_cpu_custom(float *x, const int n, const ACTIVATION a) |
| | | { |
| | | int i = 0; |
| | |
| | | {} |
| | | else if (a == LEAKY) |
| | | { |
| | | if (is_fma_avx()) { |
| | | if (is_fma_avx2()) { |
| | | __m256i all256_sing1 = _mm256_set_epi32(0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000); |
| | | __m256 all256_01 = _mm256_set1_ps(0.1F); |
| | | |
| | |
| | | |
| | | size_t i; |
| | | __m256i all256_sing1 = _mm256_set_epi32(0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000); |
| | | __m256 float_zero256 = _mm256_set1_ps(0.0); |
| | | |
| | | for (i = 0; i < size; i+=8) |
| | | { |
| | | __m256i src256 = _mm256_loadu_si256((__m256i *)(&src[i])); |
| | | __m256i result256 = _mm256_and_si256(src256, all256_sing1); // check sign in 8 x 32-bit floats |
| | | //__m256i src256 = _mm256_loadu_si256((__m256i *)(&src[i])); |
| | | //__m256i result256 = _mm256_and_si256(src256, all256_sing1); // check sign in 8 x 32-bit floats |
| | | //uint32_t mask = _mm256_movemask_ps(_mm256_castsi256_ps(result256)); // (val >= 0) ? 0 : 1 |
| | | ////mask = ~mask; // inverse mask, (val >= 0) ? 1 : 0 |
| | | |
| | | uint32_t mask = _mm256_movemask_ps(_mm256_castsi256_ps(result256)); // (val >= 0) ? 0 : 1 |
| | | mask = ~mask; // inverse mask, (val >= 0) ? 1 : 0 |
| | | __m256 src256 = _mm256_loadu_ps((float *)(&src[i])); |
| | | __m256 result256 = _mm256_cmp_ps(src256, float_zero256, _CMP_GT_OS); |
| | | uint32_t mask = _mm256_movemask_ps(result256); // (val > 0) ? 0 : 1 |
| | | |
| | | dst[i / 8] = mask; |
| | | } |
| | |
| | | } |
| | | |
| | | |
| | | void forward_maxpool_layer_avx(float *src, float *dst, int *indexes, int size, int w, int h, int out_w, int out_h, int c, |
| | | int pad, int stride, int batch) |
| | | { |
| | | |
| | | int w_offset = -pad / 2; |
| | | int h_offset = -pad / 2; |
| | | int b, k; |
| | | |
| | | for (b = 0; b < batch; ++b) { |
| | | #pragma omp parallel for |
| | | for (k = 0; k < c; ++k) { |
| | | int i, j, m, n; |
| | | for (i = 0; i < out_h; ++i) { |
| | | //for (j = 0; j < out_w; ++j) { |
| | | j = 0; |
| | | |
| | | if(stride == 1 && is_avx() == 1) { |
| | | for (j = 0; j < out_w - 8 - (size - 1); j += 8) { |
| | | int out_index = j + out_w*(i + out_h*(k + c*b)); |
| | | __m256 max256 = _mm256_set1_ps(-FLT_MAX); |
| | | for (n = 0; n < size; ++n) { |
| | | for (m = 0; m < size; ++m) { |
| | | int cur_h = h_offset + i*stride + n; |
| | | int cur_w = w_offset + j*stride + m; |
| | | int index = cur_w + w*(cur_h + h*(k + b*c)); |
| | | int valid = (cur_h >= 0 && cur_h < h && |
| | | cur_w >= 0 && cur_w < w); |
| | | if (!valid) continue; |
| | | |
| | | __m256 src256 = _mm256_loadu_ps(&src[index]); |
| | | max256 = _mm256_max_ps(src256, max256); |
| | | } |
| | | } |
| | | _mm256_storeu_ps(&dst[out_index], max256); |
| | | |
| | | } |
| | | } |
| | | else if (size == 2 && stride == 2 && is_avx() == 1) { |
| | | for (j = 0; j < out_w - 4; j += 4) { |
| | | int out_index = j + out_w*(i + out_h*(k + c*b)); |
| | | float max = -FLT_MAX; |
| | | int max_i = -1; |
| | | __m128 max128 = _mm_set1_ps(-FLT_MAX); |
| | | |
| | | for (n = 0; n < size; ++n) { |
| | | //for (m = 0; m < size; ++m) |
| | | m = 0; |
| | | { |
| | | int cur_h = h_offset + i*stride + n; |
| | | int cur_w = w_offset + j*stride + m; |
| | | int index = cur_w + w*(cur_h + h*(k + b*c)); |
| | | int valid = (cur_h >= 0 && cur_h < h && |
| | | cur_w >= 0 && cur_w < w); |
| | | if (!valid) continue; |
| | | |
| | | __m256 src256 = _mm256_loadu_ps(&src[index]); |
| | | __m256 src256_2 = _mm256_permute_ps(src256, (1 << 0) | (3 << 4)); |
| | | __m256 max256 = _mm256_max_ps(src256, src256_2); |
| | | |
| | | __m128 src128_0 = _mm256_extractf128_ps(max256, 0); |
| | | __m128 src128_1 = _mm256_extractf128_ps(max256, 1); |
| | | __m128 src128 = _mm_shuffle_ps(src128_0, src128_1, (2 << 2) | (2 << 6)); |
| | | |
| | | max128 = _mm_max_ps(src128, max128); |
| | | } |
| | | } |
| | | _mm_storeu_ps(&dst[out_index], max128); |
| | | } |
| | | } |
| | | |
| | | for (; j < out_w; ++j) { |
| | | int out_index = j + out_w*(i + out_h*(k + c*b)); |
| | | float max = -FLT_MAX; |
| | | int max_i = -1; |
| | | for (n = 0; n < size; ++n) { |
| | | for (m = 0; m < size; ++m) { |
| | | int cur_h = h_offset + i*stride + n; |
| | | int cur_w = w_offset + j*stride + m; |
| | | int index = cur_w + w*(cur_h + h*(k + b*c)); |
| | | int valid = (cur_h >= 0 && cur_h < h && |
| | | cur_w >= 0 && cur_w < w); |
| | | float val = (valid != 0) ? src[index] : -FLT_MAX; |
| | | max_i = (val > max) ? index : max_i; |
| | | max = (val > max) ? val : max; |
| | | } |
| | | } |
| | | dst[out_index] = max; |
| | | indexes[out_index] = max_i; |
| | | } |
| | | } |
| | | } |
| | | } |
| | | } |
| | | |
| | | #else |
| | | |
| | | void gemm_nn(int M, int N, int K, float ALPHA, |
| | |
| | | int channels, int height, int width, |
| | | int ksize, int stride, int pad, float* data_col) |
| | | { |
| | | im2col_cpu(data_im, channels, height, width, ksize, stride, pad, data_col); |
| | | return; |
| | | |
| | | int c, h, w; |
| | | int height_col = (height + 2 * pad - ksize) / stride + 1; |
| | |
| | | int col_index = (c * height_col + h) * width_col + w; |
| | | |
| | | data_col[col_index] = data_im[im_col + width*(im_row + height*c_im)]; |
| | | } |
| | | } |
| | | |
| | | for (; w < width_col - pad; ++w) { |
| | | int im_row = h_offset + h - pad; |
| | |
| | | |
| | | data_col[col_index] = data_im[im_col + width*(im_row + height*c_im)]; |
| | | } |
| | | } |
| | | } |
| | | |
| | | { |
| | | w = 0; |
| | |
| | | } |
| | | } |
| | | |
| | | |
| | | //From Berkeley Vision's Caffe! |
| | | //https://github.com/BVLC/caffe/blob/master/LICENSE |
| | | void im2col_cpu_custom_bin(float* data_im, |
| | | int channels, int height, int width, |
| | | int ksize, int stride, int pad, float* data_col, int bit_align) |
| | | { |
| | | int c, h, w; |
| | | int height_col = (height + 2 * pad - ksize) / stride + 1; |
| | | int width_col = (width + 2 * pad - ksize) / stride + 1; |
| | | int channels_col = channels * ksize * ksize; |
| | | |
| | | // optimized version |
| | | if (height_col == height && width_col == width && stride == 1 && pad == 1) |
| | | { |
| | | int new_ldb = bit_align; |
| | | |
| | | #pragma omp parallel for |
| | | for (c = 0; c < channels_col; ++c) { |
| | | int w_offset = c % ksize; |
| | | int h_offset = (c / ksize) % ksize; |
| | | int c_im = c / ksize / ksize; |
| | | for (h = pad; h < height_col - pad; ++h) { |
| | | for (w = pad; w < width_col - pad - 8; w += 1) { |
| | | int im_row = h_offset + h - pad; |
| | | int im_col = w_offset + w - pad; |
| | | //int col_index = (c * height_col + h) * width_col + w; |
| | | int col_index = c * new_ldb + h * width_col + w; |
| | | |
| | | float val = data_im[im_col + width*(im_row + height*c_im)]; |
| | | if (val > 0) set_bit(data_col, col_index); |
| | | } |
| | | |
| | | for (; w < width_col - pad; ++w) { |
| | | int im_row = h_offset + h - pad; |
| | | int im_col = w_offset + w - pad; |
| | | //int col_index = (c * height_col + h) * width_col + w; |
| | | int col_index = c * new_ldb + h * width_col + w; |
| | | |
| | | //data_col[col_index] = data_im[im_col + width*(im_row + height*c_im)]; |
| | | float val = data_im[im_col + width*(im_row + height*c_im)]; |
| | | if (val > 0) set_bit(data_col, col_index); |
| | | } |
| | | } |
| | | |
| | | { |
| | | w = 0; |
| | | for (h = 0; h < height_col; ++h) { |
| | | int im_row = h_offset + h; |
| | | int im_col = w_offset + w; |
| | | //int col_index = (c * height_col + h) * width_col + w; |
| | | int col_index = c * new_ldb + h * width_col + w; |
| | | |
| | | //data_col[col_index] = im2col_get_pixel(data_im, height, width, channels, im_row, im_col, c_im, pad); |
| | | float val = im2col_get_pixel(data_im, height, width, channels, im_row, im_col, c_im, pad); |
| | | if (val > 0) set_bit(data_col, col_index); |
| | | } |
| | | } |
| | | |
| | | { |
| | | w = width_col - 1; |
| | | for (h = 0; h < height_col; ++h) { |
| | | int im_row = h_offset + h; |
| | | int im_col = w_offset + w; |
| | | //int col_index = (c * height_col + h) * width_col + w; |
| | | int col_index = c * new_ldb + h * width_col + w; |
| | | |
| | | //data_col[col_index] = im2col_get_pixel(data_im, height, width, channels, im_row, im_col, c_im, pad); |
| | | float val = im2col_get_pixel(data_im, height, width, channels, im_row, im_col, c_im, pad); |
| | | if (val > 0) set_bit(data_col, col_index); |
| | | } |
| | | } |
| | | |
| | | { |
| | | h = 0; |
| | | for (w = 0; w < width_col; ++w) { |
| | | int im_row = h_offset + h; |
| | | int im_col = w_offset + w; |
| | | //int col_index = (c * height_col + h) * width_col + w; |
| | | int col_index = c * new_ldb + h * width_col + w; |
| | | |
| | | //data_col[col_index] = im2col_get_pixel(data_im, height, width, channels, im_row, im_col, c_im, pad); |
| | | float val = im2col_get_pixel(data_im, height, width, channels, im_row, im_col, c_im, pad); |
| | | if (val > 0) set_bit(data_col, col_index); |
| | | } |
| | | } |
| | | |
| | | { |
| | | h = height_col - 1; |
| | | for (w = 0; w < width_col; ++w) { |
| | | int im_row = h_offset + h; |
| | | int im_col = w_offset + w; |
| | | //int col_index = (c * height_col + h) * width_col + w; |
| | | int col_index = c * new_ldb + h * width_col + w; |
| | | |
| | | //data_col[col_index] = im2col_get_pixel(data_im, height, width, channels, im_row, im_col, c_im, pad); |
| | | float val = im2col_get_pixel(data_im, height, width, channels, im_row, im_col, c_im, pad); |
| | | if (val > 0) set_bit(data_col, col_index); |
| | | } |
| | | } |
| | | } |
| | | |
| | | } |
| | | else { |
| | | printf("\n Error: is no non-optimized version \n"); |
| | | //im2col_cpu(data_im, channels, height, width, ksize, stride, pad, data_col); // must be aligned for transpose after float_to_bin |
| | | // float_to_bit(b, t_input, src_size); |
| | | // transpose_bin(t_input, *t_bit_input, k, n, bit_align, new_ldb, 8); |
| | | } |
| | | } |
| | | |
| | | |
| | | void activate_array_cpu_custom(float *x, const int n, const ACTIVATION a) |
| | | { |
| | | int i; |
| | |
| | | } |
| | | } |
| | | } |
| | | #endif // __x86_64 |
| | | |
| | | void forward_maxpool_layer_avx(float *src, float *dst, int *indexes, int size, int w, int h, int out_w, int out_h, int c, |
| | | int pad, int stride, int batch) |
| | | { |
| | | int b, k; |
| | | int w_offset = -pad / 2; |
| | | int h_offset = -pad / 2; |
| | | |
| | | for (b = 0; b < batch; ++b) { |
| | | #pragma omp parallel for |
| | | for (k = 0; k < c; ++k) { |
| | | int i, j, m, n; |
| | | for (i = 0; i < out_h; ++i) { |
| | | for (j = 0; j < out_w; ++j) { |
| | | int out_index = j + out_w*(i + out_h*(k + c*b)); |
| | | float max = -FLT_MAX; |
| | | int max_i = -1; |
| | | for (n = 0; n < size; ++n) { |
| | | for (m = 0; m < size; ++m) { |
| | | int cur_h = h_offset + i*stride + n; |
| | | int cur_w = w_offset + j*stride + m; |
| | | int index = cur_w + w*(cur_h + h*(k + b*c)); |
| | | int valid = (cur_h >= 0 && cur_h < h && |
| | | cur_w >= 0 && cur_w < w); |
| | | float val = (valid != 0) ? src[index] : -FLT_MAX; |
| | | max_i = (val > max) ? index : max_i; |
| | | max = (val > max) ? val : max; |
| | | } |
| | | } |
| | | dst[out_index] = max; |
| | | indexes[out_index] = max_i; |
| | | } |
| | | } |
| | | } |
| | | } |
| | | } |
| | | |
| | | #endif // AVX |
| | | |
| | | void gemm_nt(int M, int N, int K, float ALPHA, |
| | | float *A, int lda, |