Joseph Redmon
2016-03-28 0dff437a692a5f875dd0293c628ac9172f697c69
src/parser.c
@@ -12,6 +12,7 @@
#include "deconvolutional_layer.h"
#include "connected_layer.h"
#include "rnn_layer.h"
#include "crnn_layer.h"
#include "maxpool_layer.h"
#include "softmax_layer.h"
#include "dropout_layer.h"
@@ -36,6 +37,7 @@
int is_deconvolutional(section *s);
int is_connected(section *s);
int is_rnn(section *s);
int is_crnn(section *s);
int is_maxpool(section *s);
int is_avgpool(section *s);
int is_dropout(section *s);
@@ -158,6 +160,7 @@
    convolutional_layer layer = make_convolutional_layer(batch,h,w,c,n,size,stride,pad,activation, batch_normalize, binary);
    layer.flipped = option_find_int_quiet(options, "flipped", 0);
    layer.dot = option_find_float_quiet(options, "dot", 0);
    char *weights = option_find_str(options, "weights", 0);
    char *biases = option_find_str(options, "biases", 0);
@@ -169,6 +172,21 @@
    return layer;
}
layer parse_crnn(list *options, size_params params)
{
    int output_filters = option_find_int(options, "output_filters",1);
    int hidden_filters = option_find_int(options, "hidden_filters",1);
    char *activation_s = option_find_str(options, "activation", "logistic");
    ACTIVATION activation = get_activation(activation_s);
    int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0);
    layer l = make_crnn_layer(params.batch, params.w, params.h, params.c, hidden_filters, output_filters, params.time_steps, activation, batch_normalize);
    l.shortcut = option_find_int_quiet(options, "shortcut", 0);
    return l;
}
layer parse_rnn(list *options, size_params params)
{
    int output = option_find_int(options, "output",1);
@@ -176,8 +194,11 @@
    char *activation_s = option_find_str(options, "activation", "logistic");
    ACTIVATION activation = get_activation(activation_s);
    int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0);
    int logistic = option_find_int_quiet(options, "logistic", 0);
    layer l = make_rnn_layer(params.batch, params.inputs, hidden, output, params.time_steps, activation, batch_normalize);
    layer l = make_rnn_layer(params.batch, params.inputs, hidden, output, params.time_steps, activation, batch_normalize, logistic);
    l.shortcut = option_find_int_quiet(options, "shortcut", 0);
    return l;
}
@@ -416,6 +437,7 @@
    net->w = option_find_int_quiet(options, "width",0);
    net->c = option_find_int_quiet(options, "channels",0);
    net->inputs = option_find_int_quiet(options, "inputs", net->h * net->w * net->c);
    net->max_crop = option_find_int_quiet(options, "max_crop",net->w*2);
    if(!net->inputs && !(net->h && net->w && net->c)) error("No input parameters supplied");
@@ -498,6 +520,8 @@
            l = parse_deconvolutional(options, params);
        }else if(is_rnn(s)){
            l = parse_rnn(options, params);
        }else if(is_crnn(s)){
            l = parse_crnn(options, params);
        }else if(is_connected(s)){
            l = parse_connected(options, params);
        }else if(is_crop(s)){
@@ -588,6 +612,10 @@
    return (strcmp(s->type, "[net]")==0
            || strcmp(s->type, "[network]")==0);
}
int is_crnn(section *s)
{
    return (strcmp(s->type, "[crnn]")==0);
}
int is_rnn(section *s)
{
    return (strcmp(s->type, "[rnn]")==0);
@@ -702,6 +730,59 @@
    fclose(fp);
}
void save_convolutional_weights_binary(layer l, FILE *fp)
{
#ifdef GPU
    if(gpu_index >= 0){
        pull_convolutional_layer(l);
    }
#endif
    binarize_filters(l.filters, l.n, l.c*l.size*l.size, l.binary_filters);
    int size = l.c*l.size*l.size;
    int i, j, k;
    fwrite(l.biases, sizeof(float), l.n, fp);
    if (l.batch_normalize){
        fwrite(l.scales, sizeof(float), l.n, fp);
        fwrite(l.rolling_mean, sizeof(float), l.n, fp);
        fwrite(l.rolling_variance, sizeof(float), l.n, fp);
    }
    for(i = 0; i < l.n; ++i){
        float mean = l.binary_filters[i*size];
        if(mean < 0) mean = -mean;
        fwrite(&mean, sizeof(float), 1, fp);
        for(j = 0; j < size/8; ++j){
            int index = i*size + j*8;
            unsigned char c = 0;
            for(k = 0; k < 8; ++k){
                if (j*8 + k >= size) break;
                if (l.binary_filters[index + k] > 0) c = (c | 1<<k);
            }
            fwrite(&c, sizeof(char), 1, fp);
        }
    }
}
void save_convolutional_weights(layer l, FILE *fp)
{
    if(l.binary){
        //save_convolutional_weights_binary(l, fp);
        //return;
    }
#ifdef GPU
    if(gpu_index >= 0){
        pull_convolutional_layer(l);
    }
#endif
    int num = l.n*l.c*l.size*l.size;
    fwrite(l.biases, sizeof(float), l.n, fp);
    if (l.batch_normalize){
        fwrite(l.scales, sizeof(float), l.n, fp);
        fwrite(l.rolling_mean, sizeof(float), l.n, fp);
        fwrite(l.rolling_variance, sizeof(float), l.n, fp);
    }
    fwrite(l.filters, sizeof(float), num, fp);
}
void save_connected_weights(layer l, FILE *fp)
{
#ifdef GPU
@@ -736,25 +817,17 @@
    for(i = 0; i < net.n && i < cutoff; ++i){
        layer l = net.layers[i];
        if(l.type == CONVOLUTIONAL){
#ifdef GPU
            if(gpu_index >= 0){
                pull_convolutional_layer(l);
            }
#endif
            int num = l.n*l.c*l.size*l.size;
            fwrite(l.biases, sizeof(float), l.n, fp);
            if (l.batch_normalize){
                fwrite(l.scales, sizeof(float), l.n, fp);
                fwrite(l.rolling_mean, sizeof(float), l.n, fp);
                fwrite(l.rolling_variance, sizeof(float), l.n, fp);
            }
            fwrite(l.filters, sizeof(float), num, fp);
            save_convolutional_weights(l, fp);
        } if(l.type == CONNECTED){
            save_connected_weights(l, fp);
        } if(l.type == RNN){
            save_connected_weights(*(l.input_layer), fp);
            save_connected_weights(*(l.self_layer), fp);
            save_connected_weights(*(l.output_layer), fp);
        } if(l.type == CRNN){
            save_convolutional_weights(*(l.input_layer), fp);
            save_convolutional_weights(*(l.self_layer), fp);
            save_convolutional_weights(*(l.output_layer), fp);
        } if(l.type == LOCAL){
#ifdef GPU
            if(gpu_index >= 0){
@@ -806,11 +879,68 @@
#endif
}
void load_convolutional_weights_binary(layer l, FILE *fp)
{
    fread(l.biases, sizeof(float), l.n, fp);
    if (l.batch_normalize && (!l.dontloadscales)){
        fread(l.scales, sizeof(float), l.n, fp);
        fread(l.rolling_mean, sizeof(float), l.n, fp);
        fread(l.rolling_variance, sizeof(float), l.n, fp);
    }
    int size = l.c*l.size*l.size;
    int i, j, k;
    for(i = 0; i < l.n; ++i){
        float mean = 0;
        fread(&mean, sizeof(float), 1, fp);
        for(j = 0; j < size/8; ++j){
            int index = i*size + j*8;
            unsigned char c = 0;
            fread(&c, sizeof(char), 1, fp);
            for(k = 0; k < 8; ++k){
                if (j*8 + k >= size) break;
                l.filters[index + k] = (c & 1<<k) ? mean : -mean;
            }
        }
    }
    binarize_filters2(l.filters, l.n, l.c*l.size*l.size, l.cfilters, l.scales);
#ifdef GPU
    if(gpu_index >= 0){
        push_convolutional_layer(l);
    }
#endif
}
void load_convolutional_weights(layer l, FILE *fp)
{
    if(l.binary){
        //load_convolutional_weights_binary(l, fp);
        //return;
    }
    int num = l.n*l.c*l.size*l.size;
    fread(l.biases, sizeof(float), l.n, fp);
    if (l.batch_normalize && (!l.dontloadscales)){
        fread(l.scales, sizeof(float), l.n, fp);
        fread(l.rolling_mean, sizeof(float), l.n, fp);
        fread(l.rolling_variance, sizeof(float), l.n, fp);
    }
    fread(l.filters, sizeof(float), num, fp);
    if (l.flipped) {
        transpose_matrix(l.filters, l.c*l.size*l.size, l.n);
    }
    if (l.binary) binarize_filters(l.filters, l.n, l.c*l.size*l.size, l.filters);
#ifdef GPU
    if(gpu_index >= 0){
        push_convolutional_layer(l);
    }
#endif
}
void load_weights_upto(network *net, char *filename, int cutoff)
{
    fprintf(stderr, "Loading weights from %s...", filename);
    fflush(stdout);
    FILE *fp = fopen(filename, "r");
    FILE *fp = fopen(filename, "rb");
    if(!fp) file_error(filename);
    int major;
@@ -827,22 +957,7 @@
        layer l = net->layers[i];
        if (l.dontload) continue;
        if(l.type == CONVOLUTIONAL){
            int num = l.n*l.c*l.size*l.size;
            fread(l.biases, sizeof(float), l.n, fp);
            if (l.batch_normalize && (!l.dontloadscales)){
                fread(l.scales, sizeof(float), l.n, fp);
                fread(l.rolling_mean, sizeof(float), l.n, fp);
                fread(l.rolling_variance, sizeof(float), l.n, fp);
            }
            fread(l.filters, sizeof(float), num, fp);
            if (l.flipped) {
                transpose_matrix(l.filters, l.c*l.size*l.size, l.n);
            }
#ifdef GPU
            if(gpu_index >= 0){
                push_convolutional_layer(l);
            }
#endif
            load_convolutional_weights(l, fp);
        }
        if(l.type == DECONVOLUTIONAL){
            int num = l.n*l.c*l.size*l.size;
@@ -857,6 +972,11 @@
        if(l.type == CONNECTED){
            load_connected_weights(l, fp, transpose);
        }
        if(l.type == CRNN){
            load_convolutional_weights(*(l.input_layer), fp);
            load_convolutional_weights(*(l.self_layer), fp);
            load_convolutional_weights(*(l.output_layer), fp);
        }
        if(l.type == RNN){
            load_connected_weights(*(l.input_layer), fp, transpose);
            load_connected_weights(*(l.self_layer), fp, transpose);