| | |
| | | return options; |
| | | } |
| | | |
| | | float *get_regression_values(char **labels, int n) |
| | | { |
| | | float *v = calloc(n, sizeof(float)); |
| | | int i; |
| | | for(i = 0; i < n; ++i){ |
| | | char *p = strchr(labels[i], ' '); |
| | | *p = 0; |
| | | v[i] = atof(p+1); |
| | | } |
| | | return v; |
| | | } |
| | | |
| | | void train_classifier(char *datacfg, char *cfgfile, char *weightfile, int clear) |
| | | { |
| | | int nthreads = 8; |
| | |
| | | args.min = net.min_crop; |
| | | args.max = net.max_crop; |
| | | args.angle = net.angle; |
| | | args.aspect = net.aspect; |
| | | args.exposure = net.exposure; |
| | | args.saturation = net.saturation; |
| | | args.hue = net.hue; |
| | | args.size = net.w; |
| | | |
| | | args.paths = paths; |
| | |
| | | printf("Loaded: %lf seconds\n", sec(clock()-time)); |
| | | time=clock(); |
| | | |
| | | #ifdef OPENCV |
| | | if(0){ |
| | | int u; |
| | | for(u = 0; u < imgs; ++u){ |
| | |
| | | cvWaitKey(0); |
| | | } |
| | | } |
| | | #endif |
| | | |
| | | float loss = train_network(net, train); |
| | | if(avg_loss == -1) avg_loss = loss; |
| | |
| | | |
| | | char **labels = get_labels(label_list); |
| | | list *plist = get_paths(valid_list); |
| | | int scales[] = {192, 224, 288, 320, 352}; |
| | | int scales[] = {224, 288, 320, 352, 384}; |
| | | int nscales = sizeof(scales)/sizeof(scales[0]); |
| | | |
| | | char **paths = (char **)list_to_array(plist); |
| | |
| | | } |
| | | } |
| | | |
| | | void try_classifier(char *datacfg, char *cfgfile, char *weightfile, char *filename, int layer_num) |
| | | { |
| | | network net = parse_network_cfg(cfgfile); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | set_batch_network(&net, 1); |
| | | srand(2222222); |
| | | |
| | | list *options = read_data_cfg(datacfg); |
| | | |
| | | char *name_list = option_find_str(options, "names", 0); |
| | | if(!name_list) name_list = option_find_str(options, "labels", "data/labels.list"); |
| | | int top = option_find_int(options, "top", 1); |
| | | |
| | | int i = 0; |
| | | char **names = get_labels(name_list); |
| | | clock_t time; |
| | | int *indexes = calloc(top, sizeof(int)); |
| | | char buff[256]; |
| | | char *input = buff; |
| | | while(1){ |
| | | if(filename){ |
| | | strncpy(input, filename, 256); |
| | | }else{ |
| | | printf("Enter Image Path: "); |
| | | fflush(stdout); |
| | | input = fgets(input, 256, stdin); |
| | | if(!input) return; |
| | | strtok(input, "\n"); |
| | | } |
| | | image orig = load_image_color(input, 0, 0); |
| | | image r = resize_min(orig, 256); |
| | | image im = crop_image(r, (r.w - 224 - 1)/2 + 1, (r.h - 224 - 1)/2 + 1, 224, 224); |
| | | float mean[] = {0.48263312050943, 0.45230225481413, 0.40099074308742}; |
| | | float std[] = {0.22590347483426, 0.22120921437787, 0.22103996251583}; |
| | | float var[3]; |
| | | var[0] = std[0]*std[0]; |
| | | var[1] = std[1]*std[1]; |
| | | var[2] = std[2]*std[2]; |
| | | |
| | | normalize_cpu(im.data, mean, var, 1, 3, im.w*im.h); |
| | | |
| | | float *X = im.data; |
| | | time=clock(); |
| | | float *predictions = network_predict(net, X); |
| | | |
| | | layer l = net.layers[layer_num]; |
| | | for(i = 0; i < l.c; ++i){ |
| | | if(l.rolling_mean) printf("%f %f %f\n", l.rolling_mean[i], l.rolling_variance[i], l.scales[i]); |
| | | } |
| | | #ifdef GPU |
| | | cuda_pull_array(l.output_gpu, l.output, l.outputs); |
| | | #endif |
| | | for(i = 0; i < l.outputs; ++i){ |
| | | printf("%f\n", l.output[i]); |
| | | } |
| | | /* |
| | | |
| | | printf("\n\nWeights\n"); |
| | | for(i = 0; i < l.n*l.size*l.size*l.c; ++i){ |
| | | printf("%f\n", l.filters[i]); |
| | | } |
| | | |
| | | printf("\n\nBiases\n"); |
| | | for(i = 0; i < l.n; ++i){ |
| | | printf("%f\n", l.biases[i]); |
| | | } |
| | | */ |
| | | |
| | | top_predictions(net, top, indexes); |
| | | printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time)); |
| | | for(i = 0; i < top; ++i){ |
| | | int index = indexes[i]; |
| | | printf("%s: %f\n", names[index], predictions[index]); |
| | | } |
| | | free_image(im); |
| | | if (filename) break; |
| | | } |
| | | } |
| | | |
| | | |
| | | void predict_classifier(char *datacfg, char *cfgfile, char *weightfile, char *filename) |
| | | { |
| | | network net = parse_network_cfg(cfgfile); |
| | |
| | | } |
| | | |
| | | |
| | | void threat_classifier(char *datacfg, char *cfgfile, char *weightfile, int cam_index, const char *filename) |
| | | { |
| | | #ifdef OPENCV |
| | | float threat = 0; |
| | | float roll = .2; |
| | | |
| | | printf("Classifier Demo\n"); |
| | | network net = parse_network_cfg(cfgfile); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | set_batch_network(&net, 1); |
| | | list *options = read_data_cfg(datacfg); |
| | | |
| | | srand(2222222); |
| | | CvCapture * cap; |
| | | |
| | | if(filename){ |
| | | cap = cvCaptureFromFile(filename); |
| | | }else{ |
| | | cap = cvCaptureFromCAM(cam_index); |
| | | } |
| | | |
| | | int top = option_find_int(options, "top", 1); |
| | | |
| | | char *name_list = option_find_str(options, "names", 0); |
| | | char **names = get_labels(name_list); |
| | | |
| | | int *indexes = calloc(top, sizeof(int)); |
| | | |
| | | if(!cap) error("Couldn't connect to webcam.\n"); |
| | | //cvNamedWindow("Threat", CV_WINDOW_NORMAL); |
| | | //cvResizeWindow("Threat", 512, 512); |
| | | float fps = 0; |
| | | int i; |
| | | |
| | | int count = 0; |
| | | |
| | | while(1){ |
| | | ++count; |
| | | struct timeval tval_before, tval_after, tval_result; |
| | | gettimeofday(&tval_before, NULL); |
| | | |
| | | image in = get_image_from_stream(cap); |
| | | if(!in.data) break; |
| | | image in_s = resize_image(in, net.w, net.h); |
| | | |
| | | image out = in; |
| | | int x1 = out.w / 20; |
| | | int y1 = out.h / 20; |
| | | int x2 = 2*x1; |
| | | int y2 = out.h - out.h/20; |
| | | |
| | | int border = .01*out.h; |
| | | int h = y2 - y1 - 2*border; |
| | | int w = x2 - x1 - 2*border; |
| | | |
| | | float *predictions = network_predict(net, in_s.data); |
| | | float curr_threat = predictions[0] * 0 + predictions[1] * .6 + predictions[2]; |
| | | threat = roll * curr_threat + (1-roll) * threat; |
| | | |
| | | draw_box_width(out, x2 + border, y1 + .02*h, x2 + .5 * w, y1 + .02*h + border, border, 0,0,0); |
| | | if(threat > .97) { |
| | | draw_box_width(out, x2 + .5 * w + border, |
| | | y1 + .02*h - 2*border, |
| | | x2 + .5 * w + 6*border, |
| | | y1 + .02*h + 3*border, 3*border, 1,0,0); |
| | | } |
| | | draw_box_width(out, x2 + .5 * w + border, |
| | | y1 + .02*h - 2*border, |
| | | x2 + .5 * w + 6*border, |
| | | y1 + .02*h + 3*border, .5*border, 0,0,0); |
| | | draw_box_width(out, x2 + border, y1 + .42*h, x2 + .5 * w, y1 + .42*h + border, border, 0,0,0); |
| | | if(threat > .57) { |
| | | draw_box_width(out, x2 + .5 * w + border, |
| | | y1 + .42*h - 2*border, |
| | | x2 + .5 * w + 6*border, |
| | | y1 + .42*h + 3*border, 3*border, 1,1,0); |
| | | } |
| | | draw_box_width(out, x2 + .5 * w + border, |
| | | y1 + .42*h - 2*border, |
| | | x2 + .5 * w + 6*border, |
| | | y1 + .42*h + 3*border, .5*border, 0,0,0); |
| | | |
| | | draw_box_width(out, x1, y1, x2, y2, border, 0,0,0); |
| | | for(i = 0; i < threat * h ; ++i){ |
| | | float ratio = (float) i / h; |
| | | float r = (ratio < .5) ? (2*(ratio)) : 1; |
| | | float g = (ratio < .5) ? 1 : 1 - 2*(ratio - .5); |
| | | draw_box_width(out, x1 + border, y2 - border - i, x2 - border, y2 - border - i, 1, r, g, 0); |
| | | } |
| | | top_predictions(net, top, indexes); |
| | | char buff[256]; |
| | | sprintf(buff, "/home/pjreddie/tmp/threat_%06d", count); |
| | | save_image(out, buff); |
| | | |
| | | printf("\033[2J"); |
| | | printf("\033[1;1H"); |
| | | printf("\nFPS:%.0f\n",fps); |
| | | |
| | | for(i = 0; i < top; ++i){ |
| | | int index = indexes[i]; |
| | | printf("%.1f%%: %s\n", predictions[index]*100, names[index]); |
| | | } |
| | | |
| | | if(0){ |
| | | show_image(out, "Threat"); |
| | | cvWaitKey(10); |
| | | } |
| | | free_image(in_s); |
| | | free_image(in); |
| | | |
| | | gettimeofday(&tval_after, NULL); |
| | | timersub(&tval_after, &tval_before, &tval_result); |
| | | float curr = 1000000.f/((long int)tval_result.tv_usec); |
| | | fps = .9*fps + .1*curr; |
| | | } |
| | | #endif |
| | | } |
| | | |
| | | |
| | | void demo_classifier(char *datacfg, char *cfgfile, char *weightfile, int cam_index, const char *filename) |
| | | { |
| | | #ifdef OPENCV |
| | |
| | | char *layer_s = (argc > 7) ? argv[7]: 0; |
| | | int layer = layer_s ? atoi(layer_s) : -1; |
| | | if(0==strcmp(argv[2], "predict")) predict_classifier(data, cfg, weights, filename); |
| | | else if(0==strcmp(argv[2], "try")) try_classifier(data, cfg, weights, filename, atoi(layer_s)); |
| | | else if(0==strcmp(argv[2], "train")) train_classifier(data, cfg, weights, clear); |
| | | else if(0==strcmp(argv[2], "demo")) demo_classifier(data, cfg, weights, cam_index, filename); |
| | | else if(0==strcmp(argv[2], "threat")) threat_classifier(data, cfg, weights, cam_index, filename); |
| | | else if(0==strcmp(argv[2], "test")) test_classifier(data, cfg, weights, layer); |
| | | else if(0==strcmp(argv[2], "label")) label_classifier(data, cfg, weights); |
| | | else if(0==strcmp(argv[2], "valid")) validate_classifier_single(data, cfg, weights); |