| | |
| | | #include "blas.h" |
| | | #include "utils.h" |
| | | |
| | | #ifdef OPENCV |
| | | #include "opencv2/highgui/highgui_c.h" |
| | | #endif |
| | | |
| | | // ./darknet nightmare cfg/extractor.recon.cfg ~/trained/yolo-coco.conv frame6.png -reconstruct -iters 500 -i 3 -lambda .1 -rate .01 -smooth 2 |
| | | |
| | | float abs_mean(float *x, int n) |
| | | { |
| | | int i; |
| | | float sum = 0; |
| | | for (i = 0; i < n; ++i){ |
| | | sum += abs(x[i]); |
| | | sum += fabs(x[i]); |
| | | } |
| | | return sum/n; |
| | | } |
| | |
| | | |
| | | void optimize_picture(network *net, image orig, int max_layer, float scale, float rate, float thresh, int norm) |
| | | { |
| | | scale_image(orig, 2); |
| | | translate_image(orig, -1); |
| | | //scale_image(orig, 2); |
| | | //translate_image(orig, -1); |
| | | net->n = max_layer + 1; |
| | | |
| | | int dx = rand()%16 - 8; |
| | |
| | | translate_image(orig, mean); |
| | | */ |
| | | |
| | | translate_image(orig, 1); |
| | | scale_image(orig, .5); |
| | | //translate_image(orig, 1); |
| | | //scale_image(orig, .5); |
| | | //normalize_image(orig); |
| | | |
| | | constrain_image(orig); |
| | |
| | | |
| | | } |
| | | |
| | | void smooth(image recon, image update, float lambda, int num) |
| | | { |
| | | int i, j, k; |
| | | int ii, jj; |
| | | for(k = 0; k < recon.c; ++k){ |
| | | for(j = 0; j < recon.h; ++j){ |
| | | for(i = 0; i < recon.w; ++i){ |
| | | int out_index = i + recon.w*(j + recon.h*k); |
| | | for(jj = j-num; jj <= j + num && jj < recon.h; ++jj){ |
| | | if (jj < 0) continue; |
| | | for(ii = i-num; ii <= i + num && ii < recon.w; ++ii){ |
| | | if (ii < 0) continue; |
| | | int in_index = ii + recon.w*(jj + recon.h*k); |
| | | update.data[out_index] += lambda * (recon.data[in_index] - recon.data[out_index]); |
| | | } |
| | | } |
| | | } |
| | | } |
| | | } |
| | | } |
| | | |
| | | void reconstruct_picture(network net, float *features, image recon, image update, float rate, float momentum, float lambda, int smooth_size, int iters) |
| | | { |
| | | int iter = 0; |
| | | for (iter = 0; iter < iters; ++iter) { |
| | | image delta = make_image(recon.w, recon.h, recon.c); |
| | | |
| | | network_state state = {0}; |
| | | #ifdef GPU |
| | | state.input = cuda_make_array(recon.data, recon.w*recon.h*recon.c); |
| | | state.delta = cuda_make_array(delta.data, delta.w*delta.h*delta.c); |
| | | state.truth = cuda_make_array(features, get_network_output_size(net)); |
| | | |
| | | forward_network_gpu(net, state); |
| | | backward_network_gpu(net, state); |
| | | |
| | | cuda_pull_array(state.delta, delta.data, delta.w*delta.h*delta.c); |
| | | |
| | | cuda_free(state.input); |
| | | cuda_free(state.delta); |
| | | cuda_free(state.truth); |
| | | #else |
| | | state.input = recon.data; |
| | | state.delta = delta.data; |
| | | state.truth = features; |
| | | |
| | | forward_network(net, state); |
| | | backward_network(net, state); |
| | | #endif |
| | | |
| | | axpy_cpu(recon.w*recon.h*recon.c, 1, delta.data, 1, update.data, 1); |
| | | smooth(recon, update, lambda, smooth_size); |
| | | |
| | | axpy_cpu(recon.w*recon.h*recon.c, rate, update.data, 1, recon.data, 1); |
| | | scal_cpu(recon.w*recon.h*recon.c, momentum, update.data, 1); |
| | | |
| | | //float mag = mag_array(recon.data, recon.w*recon.h*recon.c); |
| | | //scal_cpu(recon.w*recon.h*recon.c, 600/mag, recon.data, 1); |
| | | |
| | | constrain_image(recon); |
| | | free_image(delta); |
| | | } |
| | | } |
| | | |
| | | |
| | | void run_nightmare(int argc, char **argv) |
| | | { |
| | |
| | | float rate = find_float_arg(argc, argv, "-rate", .04); |
| | | float thresh = find_float_arg(argc, argv, "-thresh", 1.); |
| | | float rotate = find_float_arg(argc, argv, "-rotate", 0); |
| | | float momentum = find_float_arg(argc, argv, "-momentum", .9); |
| | | float lambda = find_float_arg(argc, argv, "-lambda", .01); |
| | | char *prefix = find_char_arg(argc, argv, "-prefix", 0); |
| | | int reconstruct = find_arg(argc, argv, "-reconstruct"); |
| | | int smooth_size = find_int_arg(argc, argv, "-smooth", 1); |
| | | |
| | | network net = parse_network_cfg(cfg); |
| | | load_weights(&net, weights); |
| | |
| | | im = resized; |
| | | } |
| | | |
| | | float *features = 0; |
| | | image update; |
| | | if (reconstruct){ |
| | | resize_network(&net, im.w, im.h); |
| | | |
| | | int zz = 0; |
| | | network_predict(net, im.data); |
| | | image out_im = get_network_image(net); |
| | | image crop = crop_image(out_im, zz, zz, out_im.w-2*zz, out_im.h-2*zz); |
| | | //flip_image(crop); |
| | | image f_im = resize_image(crop, out_im.w, out_im.h); |
| | | free_image(crop); |
| | | printf("%d features\n", out_im.w*out_im.h*out_im.c); |
| | | |
| | | |
| | | im = resize_image(im, im.w, im.h); |
| | | f_im = resize_image(f_im, f_im.w, f_im.h); |
| | | features = f_im.data; |
| | | |
| | | int i; |
| | | for(i = 0; i < 14*14*512; ++i){ |
| | | features[i] += rand_uniform(-.19, .19); |
| | | } |
| | | |
| | | free_image(im); |
| | | im = make_random_image(im.w, im.h, im.c); |
| | | update = make_image(im.w, im.h, im.c); |
| | | |
| | | } |
| | | |
| | | int e; |
| | | int n; |
| | | for(e = 0; e < rounds; ++e){ |
| | | fprintf(stderr, "Iteration: "); |
| | | fflush(stderr); |
| | | fprintf(stderr, "Iteration: "); |
| | | fflush(stderr); |
| | | for(n = 0; n < iters; ++n){ |
| | | fprintf(stderr, "%d, ", n); |
| | | fflush(stderr); |
| | | int layer = max_layer + rand()%range - range/2; |
| | | int octave = rand()%octaves; |
| | | optimize_picture(&net, im, layer, 1/pow(1.33333333, octave), rate, thresh, norm); |
| | | if(reconstruct){ |
| | | reconstruct_picture(net, features, im, update, rate, momentum, lambda, smooth_size, 1); |
| | | //if ((n+1)%30 == 0) rate *= .5; |
| | | show_image(im, "reconstruction"); |
| | | #ifdef OPENCV |
| | | cvWaitKey(10); |
| | | #endif |
| | | }else{ |
| | | int layer = max_layer + rand()%range - range/2; |
| | | int octave = rand()%octaves; |
| | | optimize_picture(&net, im, layer, 1/pow(1.33333333, octave), rate, thresh, norm); |
| | | } |
| | | } |
| | | fprintf(stderr, "done\n"); |
| | | if(0){ |