| | |
| | | #include "image.h" |
| | | #include "utils.h" |
| | | #include <stdio.h> |
| | | |
| | | int windows = 0; |
| | | |
| | | void draw_box(image a, int x1, int y1, int x2, int y2) |
| | | { |
| | | int i, c; |
| | | if(x1 < 0) x1 = 0; |
| | | if(x1 >= a.w) x1 = a.w-1; |
| | | if(x2 < 0) x2 = 0; |
| | | if(x2 >= a.w) x2 = a.w-1; |
| | | |
| | | if(y1 < 0) y1 = 0; |
| | | if(y1 >= a.h) y1 = a.h-1; |
| | | if(y2 < 0) y2 = 0; |
| | | if(y2 >= a.h) y2 = a.h-1; |
| | | |
| | | for(c = 0; c < a.c; ++c){ |
| | | for(i = x1; i < x2; ++i){ |
| | | a.data[i + y1*a.w + c*a.w*a.h] = (c==0)?1:-1; |
| | | a.data[i + y2*a.w + c*a.w*a.h] = (c==0)?1:-1; |
| | | } |
| | | } |
| | | for(c = 0; c < a.c; ++c){ |
| | | for(i = y1; i < y2; ++i){ |
| | | a.data[x1 + i*a.w + c*a.w*a.h] = (c==0)?1:-1; |
| | | a.data[x2 + i*a.w + c*a.w*a.h] = (c==0)?1:-1; |
| | | } |
| | | } |
| | | } |
| | | |
| | | void jitter_image(image a, int h, int w, int dh, int dw) |
| | | { |
| | | int i,j,k; |
| | | for(k = 0; k < a.c; ++k){ |
| | | for(i = 0; i < h; ++i){ |
| | | for(j = 0; j < w; ++j){ |
| | | int src = j + dw + (i+dh)*a.w + k*a.w*a.h; |
| | | int dst = j + i*w + k*w*h; |
| | | //printf("%d %d\n", src, dst); |
| | | a.data[dst] = a.data[src]; |
| | | } |
| | | } |
| | | } |
| | | } |
| | | |
| | | image image_distance(image a, image b) |
| | | { |
| | | int i,j; |
| | | image dist = make_image(a.h, a.w, 1); |
| | | for(i = 0; i < a.c; ++i){ |
| | | for(j = 0; j < a.h*a.w; ++j){ |
| | | dist.data[j] += pow(a.data[i*a.h*a.w+j]-b.data[i*a.h*a.w+j],2); |
| | | } |
| | | } |
| | | for(j = 0; j < a.h*a.w; ++j){ |
| | | dist.data[j] = sqrt(dist.data[j]); |
| | | } |
| | | return dist; |
| | | } |
| | | |
| | | void subtract_image(image a, image b) |
| | | { |
| | | int i; |
| | | for(i = 0; i < a.h*a.w*a.c; ++i) a.data[i] -= b.data[i]; |
| | | } |
| | | |
| | | void embed_image(image source, image dest, int h, int w) |
| | | { |
| | | int i,j,k; |
| | | for(k = 0; k < source.c; ++k){ |
| | | for(i = 0; i < source.h; ++i){ |
| | | for(j = 0; j < source.w; ++j){ |
| | | float val = get_pixel(source, i,j,k); |
| | | set_pixel(dest, h+i, w+j, k, val); |
| | | } |
| | | } |
| | | } |
| | | } |
| | | |
| | | image collapse_image_layers(image source, int border) |
| | | { |
| | | int h = source.h; |
| | | h = (h+border)*source.c - border; |
| | | image dest = make_image(h, source.w, 1); |
| | | int i; |
| | | for(i = 0; i < source.c; ++i){ |
| | | image layer = get_image_layer(source, i); |
| | | int h_offset = i*(source.h+border); |
| | | embed_image(layer, dest, h_offset, 0); |
| | | free_image(layer); |
| | | } |
| | | return dest; |
| | | } |
| | | |
| | | void z_normalize_image(image p) |
| | | { |
| | | normalize_array(p.data, p.h*p.w*p.c); |
| | | } |
| | | |
| | | void normalize_image(image p) |
| | | { |
| | | double *min = calloc(p.c, sizeof(double)); |
| | | double *max = calloc(p.c, sizeof(double)); |
| | | float *min = calloc(p.c, sizeof(float)); |
| | | float *max = calloc(p.c, sizeof(float)); |
| | | int i,j; |
| | | for(i = 0; i < p.c; ++i) min[i] = max[i] = p.data[i*p.h*p.w]; |
| | | |
| | | for(j = 0; j < p.c; ++j){ |
| | | for(i = 0; i < p.h*p.w; ++i){ |
| | | double v = p.data[i+j*p.h*p.w]; |
| | | float v = p.data[i+j*p.h*p.w]; |
| | | if(v < min[j]) min[j] = v; |
| | | if(v > max[j]) max[j] = v; |
| | | } |
| | | } |
| | | for(i = 0; i < p.c; ++i){ |
| | | if(max[i] - min[i] < .00001){ |
| | | if(max[i] - min[i] < .000000001){ |
| | | min[i] = 0; |
| | | max[i] = 1; |
| | | } |
| | |
| | | free(max); |
| | | } |
| | | |
| | | double avg_image_layer(image m, int l) |
| | | float avg_image_layer(image m, int l) |
| | | { |
| | | int i; |
| | | double sum = 0; |
| | | float sum = 0; |
| | | for(i = 0; i < m.h*m.w; ++i){ |
| | | sum += m.data[l*m.h*m.w + i]; |
| | | } |
| | | return sum/(m.h*m.w); |
| | | } |
| | | |
| | | void threshold_image(image p, double t) |
| | | void threshold_image(image p, float t) |
| | | { |
| | | int i; |
| | | for(i = 0; i < p.w*p.h*p.c; ++i){ |
| | |
| | | image copy_image(image p) |
| | | { |
| | | image copy = p; |
| | | copy.data = calloc(p.h*p.w*p.c, sizeof(double)); |
| | | memcpy(copy.data, p.data, p.h*p.w*p.c*sizeof(double)); |
| | | copy.data = calloc(p.h*p.w*p.c, sizeof(float)); |
| | | memcpy(copy.data, p.data, p.h*p.w*p.c*sizeof(float)); |
| | | return copy; |
| | | } |
| | | |
| | | |
| | | void show_image(image p, char *name) |
| | | { |
| | | int i,j,k; |
| | |
| | | normalize_image(copy); |
| | | |
| | | char buff[256]; |
| | | sprintf(buff, "%s (%d)", name, windows); |
| | | //sprintf(buff, "%s (%d)", name, windows); |
| | | sprintf(buff, "%s", name); |
| | | |
| | | IplImage *disp = cvCreateImage(cvSize(p.w,p.h), IPL_DEPTH_8U, p.c); |
| | | int step = disp->widthStep; |
| | | cvNamedWindow(buff, CV_WINDOW_AUTOSIZE); |
| | | cvMoveWindow(buff, 100*(windows%10) + 200*(windows/10), 100*(windows%10)); |
| | | //cvMoveWindow(buff, 100*(windows%10) + 200*(windows/10), 100*(windows%10)); |
| | | ++windows; |
| | | for(i = 0; i < p.h; ++i){ |
| | | for(j = 0; j < p.w; ++j){ |
| | |
| | | } |
| | | } |
| | | } |
| | | if(disp->height < 100 || disp->width < 100){ |
| | | free_image(copy); |
| | | if(disp->height < 500 || disp->width < 500 || disp->height > 1000){ |
| | | int w = 500; |
| | | int h = w*p.h/p.w; |
| | | if(h > 1000){ |
| | | h = 1000; |
| | | w = h*p.w/p.h; |
| | | } |
| | | IplImage *buffer = disp; |
| | | disp = cvCreateImage(cvSize(100,100*p.h/p.w), buffer->depth, buffer->nChannels); |
| | | disp = cvCreateImage(cvSize(w, h), buffer->depth, buffer->nChannels); |
| | | cvResize(buffer, disp, CV_INTER_NN); |
| | | cvReleaseImage(&buffer); |
| | | } |
| | |
| | | cvReleaseImage(&disp); |
| | | } |
| | | |
| | | void save_image(image p, char *name) |
| | | { |
| | | int i,j,k; |
| | | image copy = copy_image(p); |
| | | normalize_image(copy); |
| | | |
| | | char buff[256]; |
| | | //sprintf(buff, "%s (%d)", name, windows); |
| | | sprintf(buff, "%s.png", name); |
| | | |
| | | IplImage *disp = cvCreateImage(cvSize(p.w,p.h), IPL_DEPTH_8U, p.c); |
| | | int step = disp->widthStep; |
| | | for(i = 0; i < p.h; ++i){ |
| | | for(j = 0; j < p.w; ++j){ |
| | | for(k= 0; k < p.c; ++k){ |
| | | disp->imageData[i*step + j*p.c + k] = (unsigned char)(get_pixel(copy,i,j,k)*255); |
| | | } |
| | | } |
| | | } |
| | | free_image(copy); |
| | | cvSaveImage(buff, disp,0); |
| | | cvReleaseImage(&disp); |
| | | } |
| | | |
| | | void show_image_layers(image p, char *name) |
| | | { |
| | | int i; |
| | |
| | | } |
| | | } |
| | | |
| | | void show_image_collapsed(image p, char *name) |
| | | { |
| | | image c = collapse_image_layers(p, 1); |
| | | show_image(c, name); |
| | | free_image(c); |
| | | } |
| | | |
| | | image make_empty_image(int h, int w, int c) |
| | | { |
| | | image out; |
| | | out.data = 0; |
| | | out.h = h; |
| | | out.w = w; |
| | | out.c = c; |
| | |
| | | image make_image(int h, int w, int c) |
| | | { |
| | | image out = make_empty_image(h,w,c); |
| | | out.data = calloc(h*w*c, sizeof(double)); |
| | | out.data = calloc(h*w*c, sizeof(float)); |
| | | return out; |
| | | } |
| | | |
| | | image double_to_image(int h, int w, int c, double *data) |
| | | image float_to_image(int h, int w, int c, float *data) |
| | | { |
| | | image out = make_empty_image(h,w,c); |
| | | out.data = data; |
| | |
| | | |
| | | void zero_image(image m) |
| | | { |
| | | memset(m.data, 0, m.h*m.w*m.c*sizeof(double)); |
| | | memset(m.data, 0, m.h*m.w*m.c*sizeof(float)); |
| | | } |
| | | |
| | | void zero_channel(image m, int c) |
| | | { |
| | | memset(&(m.data[c*m.h*m.w]), 0, m.h*m.w*sizeof(double)); |
| | | memset(&(m.data[c*m.h*m.w]), 0, m.h*m.w*sizeof(float)); |
| | | } |
| | | |
| | | void rotate_image(image m) |
| | |
| | | int i,j; |
| | | for(j = 0; j < m.c; ++j){ |
| | | for(i = 0; i < m.h*m.w/2; ++i){ |
| | | double swap = m.data[j*m.h*m.w + i]; |
| | | float swap = m.data[j*m.h*m.w + i]; |
| | | m.data[j*m.h*m.w + i] = m.data[j*m.h*m.w + (m.h*m.w-1 - i)]; |
| | | m.data[j*m.h*m.w + (m.h*m.w-1 - i)] = swap; |
| | | } |
| | |
| | | image out = make_image(h,w,c); |
| | | int i; |
| | | for(i = 0; i < h*w*c; ++i){ |
| | | out.data[i] = (.5-(double)rand()/RAND_MAX); |
| | | out.data[i] = rand_normal(); |
| | | //out.data[i] = rand()%3; |
| | | } |
| | | return out; |
| | | } |
| | | |
| | | image make_random_kernel(int size, int c) |
| | | void add_into_image(image src, image dest, int h, int w) |
| | | { |
| | | int i,j,k; |
| | | for(k = 0; k < src.c; ++k){ |
| | | for(i = 0; i < src.h; ++i){ |
| | | for(j = 0; j < src.w; ++j){ |
| | | add_pixel(dest, h+i, w+j, k, get_pixel(src, i, j, k)); |
| | | } |
| | | } |
| | | } |
| | | } |
| | | |
| | | void translate_image(image m, float s) |
| | | { |
| | | int i; |
| | | for(i = 0; i < m.h*m.w*m.c; ++i) m.data[i] += s; |
| | | } |
| | | |
| | | void scale_image(image m, float s) |
| | | { |
| | | int i; |
| | | for(i = 0; i < m.h*m.w*m.c; ++i) m.data[i] *= s; |
| | | } |
| | | |
| | | image make_random_kernel(int size, int c, float scale) |
| | | { |
| | | int pad; |
| | | if((pad=(size%2==0))) ++size; |
| | | image out = make_random_image(size,size,c); |
| | | scale_image(out, scale); |
| | | int i,k; |
| | | if(pad){ |
| | | for(k = 0; k < out.c; ++k){ |
| | |
| | | return out; |
| | | } |
| | | |
| | | |
| | | image load_image(char *filename) |
| | | // Returns a new image that is a cropped version (rectangular cut-out) |
| | | // of the original image. |
| | | IplImage* cropImage(const IplImage *img, const CvRect region) |
| | | { |
| | | IplImage* src = 0; |
| | | if( (src = cvLoadImage(filename,-1)) == 0 ) |
| | | { |
| | | printf("Cannot load file image %s\n", filename); |
| | | exit(0); |
| | | IplImage *imageCropped; |
| | | CvSize size; |
| | | |
| | | if (img->width <= 0 || img->height <= 0 |
| | | || region.width <= 0 || region.height <= 0) { |
| | | //cerr << "ERROR in cropImage(): invalid dimensions." << endl; |
| | | exit(1); |
| | | } |
| | | |
| | | if (img->depth != IPL_DEPTH_8U) { |
| | | //cerr << "ERROR in cropImage(): image depth is not 8." << endl; |
| | | exit(1); |
| | | } |
| | | |
| | | // Set the desired region of interest. |
| | | cvSetImageROI((IplImage*)img, region); |
| | | // Copy region of interest into a new iplImage and return it. |
| | | size.width = region.width; |
| | | size.height = region.height; |
| | | imageCropped = cvCreateImage(size, IPL_DEPTH_8U, img->nChannels); |
| | | cvCopy(img, imageCropped,NULL); // Copy just the region. |
| | | |
| | | return imageCropped; |
| | | } |
| | | |
| | | // Creates a new image copy that is of a desired size. The aspect ratio will |
| | | // be kept constant if 'keepAspectRatio' is true, by cropping undesired parts |
| | | // so that only pixels of the original image are shown, instead of adding |
| | | // extra blank space. |
| | | // Remember to free the new image later. |
| | | IplImage* resizeImage(const IplImage *origImg, int newHeight, int newWidth, |
| | | int keepAspectRatio) |
| | | { |
| | | IplImage *outImg = 0; |
| | | int origWidth = 0; |
| | | int origHeight = 0; |
| | | if (origImg) { |
| | | origWidth = origImg->width; |
| | | origHeight = origImg->height; |
| | | } |
| | | if (newWidth <= 0 || newHeight <= 0 || origImg == 0 |
| | | || origWidth <= 0 || origHeight <= 0) { |
| | | //cerr << "ERROR: Bad desired image size of " << newWidth |
| | | // << "x" << newHeight << " in resizeImage().\n"; |
| | | exit(1); |
| | | } |
| | | |
| | | if (keepAspectRatio) { |
| | | // Resize the image without changing its aspect ratio, |
| | | // by cropping off the edges and enlarging the middle section. |
| | | CvRect r; |
| | | // input aspect ratio |
| | | float origAspect = (origWidth / (float)origHeight); |
| | | // output aspect ratio |
| | | float newAspect = (newWidth / (float)newHeight); |
| | | // crop width to be origHeight * newAspect |
| | | if (origAspect > newAspect) { |
| | | int tw = (origHeight * newWidth) / newHeight; |
| | | r = cvRect((origWidth - tw)/2, 0, tw, origHeight); |
| | | } |
| | | else { // crop height to be origWidth / newAspect |
| | | int th = (origWidth * newHeight) / newWidth; |
| | | r = cvRect(0, (origHeight - th)/2, origWidth, th); |
| | | } |
| | | IplImage *croppedImg = cropImage(origImg, r); |
| | | |
| | | // Call this function again, with the new aspect ratio image. |
| | | // Will do a scaled image resize with the correct aspect ratio. |
| | | outImg = resizeImage(croppedImg, newHeight, newWidth, 0); |
| | | cvReleaseImage( &croppedImg ); |
| | | } |
| | | else { |
| | | |
| | | // Scale the image to the new dimensions, |
| | | // even if the aspect ratio will be changed. |
| | | outImg = cvCreateImage(cvSize(newWidth, newHeight), |
| | | origImg->depth, origImg->nChannels); |
| | | if (newWidth > origImg->width && newHeight > origImg->height) { |
| | | // Make the image larger |
| | | cvResetImageROI((IplImage*)origImg); |
| | | // CV_INTER_LINEAR: good at enlarging. |
| | | // CV_INTER_CUBIC: good at enlarging. |
| | | cvResize(origImg, outImg, CV_INTER_LINEAR); |
| | | } |
| | | else { |
| | | // Make the image smaller |
| | | cvResetImageROI((IplImage*)origImg); |
| | | // CV_INTER_AREA: good at shrinking (decimation) only. |
| | | cvResize(origImg, outImg, CV_INTER_AREA); |
| | | } |
| | | |
| | | } |
| | | return outImg; |
| | | } |
| | | |
| | | image ipl_to_image(IplImage* src) |
| | | { |
| | | unsigned char *data = (unsigned char *)src->imageData; |
| | | int c = src->nChannels; |
| | | int h = src->height; |
| | | int w = src->width; |
| | | int c = src->nChannels; |
| | | int step = src->widthStep; |
| | | image out = make_image(h,w,c); |
| | | int i, j, k, count=0;; |
| | |
| | | } |
| | | } |
| | | } |
| | | return out; |
| | | } |
| | | |
| | | image load_image_color(char *filename, int h, int w) |
| | | { |
| | | IplImage* src = 0; |
| | | if( (src = cvLoadImage(filename, 1)) == 0 ) |
| | | { |
| | | printf("Cannot load file image %s\n", filename); |
| | | exit(0); |
| | | } |
| | | if(h && w && (src->height != h || src->width != w)){ |
| | | //printf("Resized!\n"); |
| | | IplImage *resized = resizeImage(src, h, w, 0); |
| | | cvReleaseImage(&src); |
| | | src = resized; |
| | | } |
| | | image out = ipl_to_image(src); |
| | | cvReleaseImage(&src); |
| | | return out; |
| | | } |
| | | |
| | | image load_image(char *filename, int h, int w) |
| | | { |
| | | IplImage* src = 0; |
| | | if( (src = cvLoadImage(filename,-1)) == 0 ) |
| | | { |
| | | printf("Cannot load file image %s\n", filename); |
| | | exit(0); |
| | | } |
| | | if(h && w ){ |
| | | IplImage *resized = resizeImage(src, h, w, 0); |
| | | cvReleaseImage(&src); |
| | | src = resized; |
| | | } |
| | | image out = ipl_to_image(src); |
| | | cvReleaseImage(&src); |
| | | return out; |
| | | } |
| | |
| | | } |
| | | return out; |
| | | } |
| | | image get_sub_image(image m, int h, int w, int dh, int dw) |
| | | { |
| | | image out = make_image(dh, dw, m.c); |
| | | int i,j,k; |
| | | for(k = 0; k < out.c; ++k){ |
| | | for(i = 0; i < dh; ++i){ |
| | | for(j = 0; j < dw; ++j){ |
| | | float val = get_pixel(m, h+i, w+j, k); |
| | | set_pixel(out, i, j, k, val); |
| | | } |
| | | } |
| | | } |
| | | return out; |
| | | } |
| | | |
| | | double get_pixel(image m, int x, int y, int c) |
| | | float get_pixel(image m, int x, int y, int c) |
| | | { |
| | | assert(x < m.h && y < m.w && c < m.c); |
| | | return m.data[c*m.h*m.w + x*m.w + y]; |
| | | } |
| | | double get_pixel_extend(image m, int x, int y, int c) |
| | | float get_pixel_extend(image m, int x, int y, int c) |
| | | { |
| | | if(x < 0 || x >= m.h || y < 0 || y >= m.w || c < 0 || c >= m.c) return 0; |
| | | return get_pixel(m, x, y, c); |
| | | } |
| | | void set_pixel(image m, int x, int y, int c, double val) |
| | | void set_pixel(image m, int x, int y, int c, float val) |
| | | { |
| | | assert(x < m.h && y < m.w && c < m.c); |
| | | m.data[c*m.h*m.w + x*m.w + y] = val; |
| | | } |
| | | void set_pixel_extend(image m, int x, int y, int c, double val) |
| | | void set_pixel_extend(image m, int x, int y, int c, float val) |
| | | { |
| | | if(x < 0 || x >= m.h || y < 0 || y >= m.w || c < 0 || c >= m.c) return; |
| | | set_pixel(m, x, y, c, val); |
| | | } |
| | | |
| | | void add_pixel(image m, int x, int y, int c, double val) |
| | | void add_pixel(image m, int x, int y, int c, float val) |
| | | { |
| | | assert(x < m.h && y < m.w && c < m.c); |
| | | m.data[c*m.h*m.w + x*m.w + y] += val; |
| | | } |
| | | |
| | | void add_pixel_extend(image m, int x, int y, int c, double val) |
| | | void add_pixel_extend(image m, int x, int y, int c, float val) |
| | | { |
| | | if(x < 0 || x >= m.h || y < 0 || y >= m.w || c < 0 || c >= m.c) return; |
| | | add_pixel(m, x, y, c, val); |
| | | } |
| | | |
| | | void two_d_convolve(image m, int mc, image kernel, int kc, int stride, image out, int oc) |
| | | void two_d_convolve(image m, int mc, image kernel, int kc, int stride, image out, int oc, int edge) |
| | | { |
| | | int x,y,i,j; |
| | | for(x = 0; x < m.h; x += stride){ |
| | | for(y = 0; y < m.w; y += stride){ |
| | | double sum = 0; |
| | | int xstart, xend, ystart, yend; |
| | | if(edge){ |
| | | xstart = ystart = 0; |
| | | xend = m.h; |
| | | yend = m.w; |
| | | }else{ |
| | | xstart = kernel.h/2; |
| | | ystart = kernel.w/2; |
| | | xend = m.h-kernel.h/2; |
| | | yend = m.w - kernel.w/2; |
| | | } |
| | | for(x = xstart; x < xend; x += stride){ |
| | | for(y = ystart; y < yend; y += stride){ |
| | | float sum = 0; |
| | | for(i = 0; i < kernel.h; ++i){ |
| | | for(j = 0; j < kernel.w; ++j){ |
| | | sum += get_pixel(kernel, i, j, kc)*get_pixel_extend(m, x+i-kernel.h/2, y+j-kernel.w/2, mc); |
| | | } |
| | | } |
| | | add_pixel(out, x/stride, y/stride, oc, sum); |
| | | add_pixel(out, (x-xstart)/stride, (y-ystart)/stride, oc, sum); |
| | | } |
| | | } |
| | | } |
| | | |
| | | double single_convolve(image m, image kernel, int x, int y) |
| | | float single_convolve(image m, image kernel, int x, int y) |
| | | { |
| | | double sum = 0; |
| | | float sum = 0; |
| | | int i, j, k; |
| | | for(i = 0; i < kernel.h; ++i){ |
| | | for(j = 0; j < kernel.w; ++j){ |
| | |
| | | return sum; |
| | | } |
| | | |
| | | void convolve(image m, image kernel, int stride, int channel, image out) |
| | | void convolve(image m, image kernel, int stride, int channel, image out, int edge) |
| | | { |
| | | assert(m.c == kernel.c); |
| | | int i; |
| | | zero_channel(out, channel); |
| | | for(i = 0; i < m.c; ++i){ |
| | | two_d_convolve(m, i, kernel, i, stride, out, channel); |
| | | two_d_convolve(m, i, kernel, i, stride, out, channel, edge); |
| | | } |
| | | /* |
| | | int j; |
| | | for(i = 0; i < m.h; i += stride){ |
| | | for(j = 0; j < m.w; j += stride){ |
| | | double val = single_convolve(m, kernel, i, j); |
| | | set_pixel(out, i/stride, j/stride, channel, val); |
| | | } |
| | | } |
| | | */ |
| | | int j; |
| | | for(i = 0; i < m.h; i += stride){ |
| | | for(j = 0; j < m.w; j += stride){ |
| | | float val = single_convolve(m, kernel, i, j); |
| | | set_pixel(out, i/stride, j/stride, channel, val); |
| | | } |
| | | } |
| | | */ |
| | | } |
| | | |
| | | void upsample_image(image m, int stride, image out) |
| | |
| | | for(k = 0; k < m.c; ++k){ |
| | | for(i = 0; i < m.h; ++i){ |
| | | for(j = 0; j< m.w; ++j){ |
| | | double val = get_pixel(m, i, j, k); |
| | | float val = get_pixel(m, i, j, k); |
| | | set_pixel(out, i*stride, j*stride, k, val); |
| | | } |
| | | } |
| | | } |
| | | } |
| | | |
| | | void single_update(image m, image update, int x, int y, double error) |
| | | void single_update(image m, image update, int x, int y, float error) |
| | | { |
| | | int i, j, k; |
| | | for(i = 0; i < update.h; ++i){ |
| | | for(j = 0; j < update.w; ++j){ |
| | | for(k = 0; k < update.c; ++k){ |
| | | double val = get_pixel_extend(m, x+i-update.h/2, y+j-update.w/2, k); |
| | | float val = get_pixel_extend(m, x+i-update.h/2, y+j-update.w/2, k); |
| | | add_pixel(update, i, j, k, val*error); |
| | | } |
| | | } |
| | | } |
| | | } |
| | | |
| | | void kernel_update(image m, image update, int stride, int channel, image out) |
| | | void kernel_update(image m, image update, int stride, int channel, image out, int edge) |
| | | { |
| | | assert(m.c == update.c); |
| | | zero_image(update); |
| | | int i, j; |
| | | for(i = 0; i < m.h; i += stride){ |
| | | for(j = 0; j < m.w; j += stride){ |
| | | double error = get_pixel(out, i/stride, j/stride, channel); |
| | | int i, j, istart, jstart, iend, jend; |
| | | if(edge){ |
| | | istart = jstart = 0; |
| | | iend = m.h; |
| | | jend = m.w; |
| | | }else{ |
| | | istart = update.h/2; |
| | | jstart = update.w/2; |
| | | iend = m.h-update.h/2; |
| | | jend = m.w - update.w/2; |
| | | } |
| | | for(i = istart; i < iend; i += stride){ |
| | | for(j = jstart; j < jend; j += stride){ |
| | | float error = get_pixel(out, (i-istart)/stride, (j-jstart)/stride, channel); |
| | | single_update(m, update, i, j, error); |
| | | } |
| | | } |
| | | for(i = 0; i < update.h*update.w*update.c; ++i){ |
| | | update.data[i] /= (m.h/stride)*(m.w/stride); |
| | | } |
| | | /* |
| | | for(i = 0; i < update.h*update.w*update.c; ++i){ |
| | | update.data[i] /= (m.h/stride)*(m.w/stride); |
| | | } |
| | | */ |
| | | } |
| | | |
| | | void single_back_convolve(image m, image kernel, int x, int y, double val) |
| | | void single_back_convolve(image m, image kernel, int x, int y, float val) |
| | | { |
| | | int i, j, k; |
| | | for(i = 0; i < kernel.h; ++i){ |
| | | for(j = 0; j < kernel.w; ++j){ |
| | | for(k = 0; k < kernel.c; ++k){ |
| | | double pval = get_pixel(kernel, i, j, k) * val; |
| | | float pval = get_pixel(kernel, i, j, k) * val; |
| | | add_pixel_extend(m, x+i-kernel.h/2, y+j-kernel.w/2, k, pval); |
| | | } |
| | | } |
| | | } |
| | | } |
| | | |
| | | void back_convolve(image m, image kernel, int stride, int channel, image out) |
| | | void back_convolve(image m, image kernel, int stride, int channel, image out, int edge) |
| | | { |
| | | assert(m.c == kernel.c); |
| | | int i, j; |
| | | for(i = 0; i < m.h; i += stride){ |
| | | for(j = 0; j < m.w; j += stride){ |
| | | double val = get_pixel(out, i/stride, j/stride, channel); |
| | | int i, j, istart, jstart, iend, jend; |
| | | if(edge){ |
| | | istart = jstart = 0; |
| | | iend = m.h; |
| | | jend = m.w; |
| | | }else{ |
| | | istart = kernel.h/2; |
| | | jstart = kernel.w/2; |
| | | iend = m.h-kernel.h/2; |
| | | jend = m.w - kernel.w/2; |
| | | } |
| | | for(i = istart; i < iend; i += stride){ |
| | | for(j = jstart; j < jend; j += stride){ |
| | | float val = get_pixel(out, (i-istart)/stride, (j-jstart)/stride, channel); |
| | | single_back_convolve(m, kernel, i, j, val); |
| | | } |
| | | } |
| | | } |
| | | |
| | | void print_image(image m) |
| | | { |
| | | int i, j, k; |
| | | for(i =0 ; i < m.c; ++i){ |
| | | for(j =0 ; j < m.h; ++j){ |
| | | for(k = 0; k < m.w; ++k){ |
| | | printf("%.2lf, ", m.data[i*m.h*m.w + j*m.w + k]); |
| | | if(k > 30) break; |
| | | } |
| | | printf("\n"); |
| | | if(j > 30) break; |
| | | } |
| | | printf("\n"); |
| | | } |
| | | printf("\n"); |
| | | } |
| | | |
| | | image collapse_images_vert(image *ims, int n) |
| | | { |
| | | int color = 1; |
| | | int border = 1; |
| | | int h,w,c; |
| | | w = ims[0].w; |
| | | h = (ims[0].h + border) * n - border; |
| | | c = ims[0].c; |
| | | if(c != 3 || !color){ |
| | | w = (w+border)*c - border; |
| | | c = 1; |
| | | } |
| | | |
| | | image filters = make_image(h,w,c); |
| | | int i,j; |
| | | for(i = 0; i < n; ++i){ |
| | | int h_offset = i*(ims[0].h+border); |
| | | image copy = copy_image(ims[i]); |
| | | //normalize_image(copy); |
| | | if(c == 3 && color){ |
| | | embed_image(copy, filters, h_offset, 0); |
| | | } |
| | | else{ |
| | | for(j = 0; j < copy.c; ++j){ |
| | | int w_offset = j*(ims[0].w+border); |
| | | image layer = get_image_layer(copy, j); |
| | | embed_image(layer, filters, h_offset, w_offset); |
| | | free_image(layer); |
| | | } |
| | | } |
| | | free_image(copy); |
| | | } |
| | | return filters; |
| | | } |
| | | |
| | | image collapse_images_horz(image *ims, int n) |
| | | { |
| | | int color = 1; |
| | | int border = 1; |
| | | int h,w,c; |
| | | int size = ims[0].h; |
| | | h = size; |
| | | w = (ims[0].w + border) * n - border; |
| | | c = ims[0].c; |
| | | if(c != 3 || !color){ |
| | | h = (h+border)*c - border; |
| | | c = 1; |
| | | } |
| | | |
| | | image filters = make_image(h,w,c); |
| | | int i,j; |
| | | for(i = 0; i < n; ++i){ |
| | | int w_offset = i*(size+border); |
| | | image copy = copy_image(ims[i]); |
| | | //normalize_image(copy); |
| | | if(c == 3 && color){ |
| | | embed_image(copy, filters, 0, w_offset); |
| | | } |
| | | else{ |
| | | for(j = 0; j < copy.c; ++j){ |
| | | int h_offset = j*(size+border); |
| | | image layer = get_image_layer(copy, j); |
| | | embed_image(layer, filters, h_offset, w_offset); |
| | | free_image(layer); |
| | | } |
| | | } |
| | | free_image(copy); |
| | | } |
| | | return filters; |
| | | } |
| | | |
| | | void show_images(image *ims, int n, char *window) |
| | | { |
| | | image m = collapse_images_vert(ims, n); |
| | | save_image(m, window); |
| | | show_image(m, window); |
| | | free_image(m); |
| | | } |
| | | |
| | | image grid_images(image **ims, int h, int w) |
| | | { |
| | | int i; |
| | | image *rows = calloc(h, sizeof(image)); |
| | | for(i = 0; i < h; ++i){ |
| | | rows[i] = collapse_images_horz(ims[i], w); |
| | | } |
| | | image out = collapse_images_vert(rows, h); |
| | | for(i = 0; i < h; ++i){ |
| | | free_image(rows[i]); |
| | | } |
| | | free(rows); |
| | | return out; |
| | | } |
| | | |
| | | void test_grid() |
| | | { |
| | | int i,j; |
| | | int num = 3; |
| | | int topk = 3; |
| | | image **vizs = calloc(num, sizeof(image*)); |
| | | for(i = 0; i < num; ++i){ |
| | | vizs[i] = calloc(topk, sizeof(image)); |
| | | for(j = 0; j < topk; ++j) vizs[i][j] = make_image(3,3,3); |
| | | } |
| | | image grid = grid_images(vizs, num, topk); |
| | | save_image(grid, "Test Grid"); |
| | | free_image(grid); |
| | | } |
| | | |
| | | void show_images_grid(image **ims, int h, int w, char *window) |
| | | { |
| | | image out = grid_images(ims, h, w); |
| | | show_image(out, window); |
| | | free_image(out); |
| | | } |
| | | |
| | | void free_image(image m) |
| | | { |
| | | free(m.data); |