| | |
| | | #include "cuda_runtime.h" |
| | | #include "curand.h" |
| | | #include "cublas_v2.h" |
| | | |
| | | extern "C" { |
| | | #include "convolutional_layer.h" |
| | | #include "gemm.h" |
| | |
| | | #include "cuda.h" |
| | | } |
| | | |
| | | __global__ void bias_output_kernel(float *output, float *biases, int n, int size) |
| | | __global__ void scale_bias_kernel(float *output, float *biases, int n, int size) |
| | | { |
| | | int offset = blockIdx.x * blockDim.x + threadIdx.x; |
| | | int filter = blockIdx.y % n; |
| | | int batch = blockIdx.y / n; |
| | | int filter = blockIdx.y; |
| | | int batch = blockIdx.z; |
| | | |
| | | if(offset < size) output[(batch*n+filter)*size + offset] = biases[filter]; |
| | | if(offset < size) output[(batch*n+filter)*size + offset] *= biases[filter]; |
| | | } |
| | | |
| | | void bias_output_gpu(float *output, float *biases, int batch, int n, int size) |
| | | void scale_bias_gpu(float *output, float *biases, int batch, int n, int size) |
| | | { |
| | | dim3 dimGrid((size-1)/BLOCK + 1, n*batch, 1); |
| | | dim3 dimGrid((size-1)/BLOCK + 1, n, batch); |
| | | dim3 dimBlock(BLOCK, 1, 1); |
| | | |
| | | bias_output_kernel<<<dimGrid, dimBlock>>>(output, biases, n, size); |
| | | scale_bias_kernel<<<dimGrid, dimBlock>>>(output, biases, n, size); |
| | | check_error(cudaPeekAtLastError()); |
| | | } |
| | | |
| | | __global__ void backward_scale_kernel(float *x_norm, float *delta, int batch, int n, int size, float *scale_updates) |
| | | { |
| | | __shared__ float part[BLOCK]; |
| | | int i,b; |
| | | int filter = blockIdx.x; |
| | | int p = threadIdx.x; |
| | | float sum = 0; |
| | | for(b = 0; b < batch; ++b){ |
| | | for(i = 0; i < size; i += BLOCK){ |
| | | int index = p + i + size*(filter + n*b); |
| | | sum += (p+i < size) ? delta[index]*x_norm[index] : 0; |
| | | } |
| | | } |
| | | part[p] = sum; |
| | | __syncthreads(); |
| | | if (p == 0) { |
| | | for(i = 0; i < BLOCK; ++i) scale_updates[filter] += part[i]; |
| | | } |
| | | } |
| | | |
| | | void backward_scale_gpu(float *x_norm, float *delta, int batch, int n, int size, float *scale_updates) |
| | | { |
| | | backward_scale_kernel<<<n, BLOCK>>>(x_norm, delta, batch, n, size, scale_updates); |
| | | check_error(cudaPeekAtLastError()); |
| | | } |
| | | |
| | | __global__ void add_bias_kernel(float *output, float *biases, int n, int size) |
| | | { |
| | | int offset = blockIdx.x * blockDim.x + threadIdx.x; |
| | | int filter = blockIdx.y; |
| | | int batch = blockIdx.z; |
| | | |
| | | if(offset < size) output[(batch*n+filter)*size + offset] += biases[filter]; |
| | | } |
| | | |
| | | void add_bias_gpu(float *output, float *biases, int batch, int n, int size) |
| | | { |
| | | dim3 dimGrid((size-1)/BLOCK + 1, n, batch); |
| | | dim3 dimBlock(BLOCK, 1, 1); |
| | | |
| | | add_bias_kernel<<<dimGrid, dimBlock>>>(output, biases, n, size); |
| | | check_error(cudaPeekAtLastError()); |
| | | } |
| | | |
| | |
| | | } |
| | | part[p] = sum; |
| | | __syncthreads(); |
| | | if(p == 0){ |
| | | if (p == 0) { |
| | | for(i = 0; i < BLOCK; ++i) bias_updates[filter] += part[i]; |
| | | } |
| | | } |
| | |
| | | check_error(cudaPeekAtLastError()); |
| | | } |
| | | |
| | | void forward_convolutional_layer_gpu(convolutional_layer layer, network_state state) |
| | | void forward_convolutional_layer_gpu(convolutional_layer l, network_state state) |
| | | { |
| | | int i; |
| | | int m = layer.n; |
| | | int k = layer.size*layer.size*layer.c; |
| | | int n = convolutional_out_height(layer)* |
| | | convolutional_out_width(layer); |
| | | int m = l.n; |
| | | int k = l.size*l.size*l.c; |
| | | int n = convolutional_out_height(l)* |
| | | convolutional_out_width(l); |
| | | |
| | | bias_output_gpu(layer.output_gpu, layer.biases_gpu, layer.batch, layer.n, n); |
| | | for(i = 0; i < layer.batch; ++i){ |
| | | im2col_ongpu(state.input + i*layer.c*layer.h*layer.w, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, layer.col_image_gpu); |
| | | float * a = layer.filters_gpu; |
| | | float * b = layer.col_image_gpu; |
| | | float * c = layer.output_gpu; |
| | | fill_ongpu(l.outputs*l.batch, 0, l.output_gpu, 1); |
| | | for(i = 0; i < l.batch; ++i){ |
| | | im2col_ongpu(state.input + i*l.c*l.h*l.w, l.c, l.h, l.w, l.size, l.stride, l.pad, l.col_image_gpu); |
| | | float * a = l.filters_gpu; |
| | | float * b = l.col_image_gpu; |
| | | float * c = l.output_gpu; |
| | | gemm_ongpu(0,0,m,n,k,1.,a,k,b,n,1.,c+i*m*n,n); |
| | | } |
| | | activate_array_ongpu(layer.output_gpu, m*n*layer.batch, layer.activation); |
| | | |
| | | if(l.batch_normalize){ |
| | | if(state.train){ |
| | | fast_mean_gpu(l.output_gpu, l.batch, l.n, l.out_h*l.out_w, l.spatial_mean_gpu, l.mean_gpu); |
| | | fast_variance_gpu(l.output_gpu, l.mean_gpu, l.batch, l.n, l.out_h*l.out_w, l.spatial_variance_gpu, l.variance_gpu); |
| | | |
| | | scal_ongpu(l.n, .95, l.rolling_mean_gpu, 1); |
| | | axpy_ongpu(l.n, .05, l.mean_gpu, 1, l.rolling_mean_gpu, 1); |
| | | scal_ongpu(l.n, .95, l.rolling_variance_gpu, 1); |
| | | axpy_ongpu(l.n, .05, l.variance_gpu, 1, l.rolling_variance_gpu, 1); |
| | | |
| | | // cuda_pull_array(l.variance_gpu, l.mean, l.n); |
| | | // printf("%f\n", l.mean[0]); |
| | | |
| | | copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_gpu, 1); |
| | | normalize_gpu(l.output_gpu, l.mean_gpu, l.variance_gpu, l.batch, l.n, l.out_h*l.out_w); |
| | | copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_norm_gpu, 1); |
| | | } else { |
| | | normalize_gpu(l.output_gpu, l.rolling_mean_gpu, l.rolling_variance_gpu, l.batch, l.n, l.out_h*l.out_w); |
| | | } |
| | | |
| | | scale_bias_gpu(l.output_gpu, l.scales_gpu, l.batch, l.n, l.out_h*l.out_w); |
| | | } |
| | | add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.n, n); |
| | | |
| | | activate_array_ongpu(l.output_gpu, m*n*l.batch, l.activation); |
| | | } |
| | | |
| | | void backward_convolutional_layer_gpu(convolutional_layer layer, network_state state) |
| | | void backward_convolutional_layer_gpu(convolutional_layer l, network_state state) |
| | | { |
| | | int i; |
| | | int m = layer.n; |
| | | int n = layer.size*layer.size*layer.c; |
| | | int k = convolutional_out_height(layer)* |
| | | convolutional_out_width(layer); |
| | | int m = l.n; |
| | | int n = l.size*l.size*l.c; |
| | | int k = convolutional_out_height(l)* |
| | | convolutional_out_width(l); |
| | | |
| | | gradient_array_ongpu(layer.output_gpu, m*k*layer.batch, layer.activation, layer.delta_gpu); |
| | | backward_bias_gpu(layer.bias_updates_gpu, layer.delta_gpu, layer.batch, layer.n, k); |
| | | gradient_array_ongpu(l.output_gpu, m*k*l.batch, l.activation, l.delta_gpu); |
| | | |
| | | if(state.delta) scal_ongpu(layer.batch*layer.h*layer.w*layer.c, 0, state.delta, 1); |
| | | backward_bias_gpu(l.bias_updates_gpu, l.delta_gpu, l.batch, l.n, k); |
| | | |
| | | for(i = 0; i < layer.batch; ++i){ |
| | | float * a = layer.delta_gpu; |
| | | float * b = layer.col_image_gpu; |
| | | float * c = layer.filter_updates_gpu; |
| | | if(l.batch_normalize){ |
| | | backward_scale_gpu(l.x_norm_gpu, l.delta_gpu, l.batch, l.n, l.out_w*l.out_h, l.scale_updates_gpu); |
| | | |
| | | im2col_ongpu(state.input + i*layer.c*layer.h*layer.w, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, layer.col_image_gpu); |
| | | scale_bias_gpu(l.delta_gpu, l.scales_gpu, l.batch, l.n, l.out_h*l.out_w); |
| | | |
| | | fast_mean_delta_gpu(l.delta_gpu, l.variance_gpu, l.batch, l.n, l.out_w*l.out_h, l.spatial_mean_delta_gpu, l.mean_delta_gpu); |
| | | fast_variance_delta_gpu(l.x_gpu, l.delta_gpu, l.mean_gpu, l.variance_gpu, l.batch, l.n, l.out_w*l.out_h, l.spatial_variance_delta_gpu, l.variance_delta_gpu); |
| | | normalize_delta_gpu(l.x_gpu, l.mean_gpu, l.variance_gpu, l.mean_delta_gpu, l.variance_delta_gpu, l.batch, l.n, l.out_w*l.out_h, l.delta_gpu); |
| | | } |
| | | |
| | | for(i = 0; i < l.batch; ++i){ |
| | | float * a = l.delta_gpu; |
| | | float * b = l.col_image_gpu; |
| | | float * c = l.filter_updates_gpu; |
| | | |
| | | im2col_ongpu(state.input + i*l.c*l.h*l.w, l.c, l.h, l.w, l.size, l.stride, l.pad, l.col_image_gpu); |
| | | gemm_ongpu(0,1,m,n,k,1,a + i*m*k,k,b,k,1,c,n); |
| | | |
| | | if(state.delta){ |
| | | |
| | | float * a = layer.filters_gpu; |
| | | float * b = layer.delta_gpu; |
| | | float * c = layer.col_image_gpu; |
| | | float * a = l.filters_gpu; |
| | | float * b = l.delta_gpu; |
| | | float * c = l.col_image_gpu; |
| | | |
| | | gemm_ongpu(1,0,n,k,m,1,a,n,b + i*k*m,k,0,c,k); |
| | | |
| | | col2im_ongpu(layer.col_image_gpu, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, state.delta + i*layer.c*layer.h*layer.w); |
| | | col2im_ongpu(l.col_image_gpu, l.c, l.h, l.w, l.size, l.stride, l.pad, state.delta + i*l.c*l.h*l.w); |
| | | } |
| | | } |
| | | } |
| | |
| | | cuda_pull_array(layer.biases_gpu, layer.biases, layer.n); |
| | | cuda_pull_array(layer.filter_updates_gpu, layer.filter_updates, layer.c*layer.n*layer.size*layer.size); |
| | | cuda_pull_array(layer.bias_updates_gpu, layer.bias_updates, layer.n); |
| | | if (layer.batch_normalize){ |
| | | cuda_pull_array(layer.scales_gpu, layer.scales, layer.n); |
| | | cuda_pull_array(layer.rolling_mean_gpu, layer.rolling_mean, layer.n); |
| | | cuda_pull_array(layer.rolling_variance_gpu, layer.rolling_variance, layer.n); |
| | | } |
| | | } |
| | | |
| | | void push_convolutional_layer(convolutional_layer layer) |
| | |
| | | cuda_push_array(layer.biases_gpu, layer.biases, layer.n); |
| | | cuda_push_array(layer.filter_updates_gpu, layer.filter_updates, layer.c*layer.n*layer.size*layer.size); |
| | | cuda_push_array(layer.bias_updates_gpu, layer.bias_updates, layer.n); |
| | | if (layer.batch_normalize){ |
| | | cuda_push_array(layer.scales_gpu, layer.scales, layer.n); |
| | | cuda_push_array(layer.rolling_mean_gpu, layer.rolling_mean, layer.n); |
| | | cuda_push_array(layer.rolling_variance_gpu, layer.rolling_variance, layer.n); |
| | | } |
| | | } |
| | | |
| | | void update_convolutional_layer_gpu(convolutional_layer layer, int batch, float learning_rate, float momentum, float decay) |
| | |
| | | axpy_ongpu(layer.n, learning_rate/batch, layer.bias_updates_gpu, 1, layer.biases_gpu, 1); |
| | | scal_ongpu(layer.n, momentum, layer.bias_updates_gpu, 1); |
| | | |
| | | axpy_ongpu(layer.n, learning_rate/batch, layer.scale_updates_gpu, 1, layer.scales_gpu, 1); |
| | | scal_ongpu(layer.n, momentum, layer.scale_updates_gpu, 1); |
| | | |
| | | axpy_ongpu(size, -decay*batch, layer.filters_gpu, 1, layer.filter_updates_gpu, 1); |
| | | axpy_ongpu(size, learning_rate/batch, layer.filter_updates_gpu, 1, layer.filters_gpu, 1); |
| | | scal_ongpu(size, momentum, layer.filter_updates_gpu, 1); |
| | | } |
| | | |
| | | |