| | |
| | | layer->delta = calloc(outputs, sizeof(float*)); |
| | | |
| | | layer->weight_updates = calloc(inputs*outputs, sizeof(float)); |
| | | layer->weight_adapt = calloc(inputs*outputs, sizeof(float)); |
| | | layer->weight_momentum = calloc(inputs*outputs, sizeof(float)); |
| | | layer->weights = calloc(inputs*outputs, sizeof(float)); |
| | | float scale = 2./inputs; |
| | | float scale = 1./inputs; |
| | | for(i = 0; i < inputs*outputs; ++i) |
| | | layer->weights[i] = rand_normal()*scale; |
| | | layer->weights[i] = scale*(rand_uniform()); |
| | | |
| | | layer->bias_updates = calloc(outputs, sizeof(float)); |
| | | layer->bias_adapt = calloc(outputs, sizeof(float)); |
| | | layer->bias_momentum = calloc(outputs, sizeof(float)); |
| | | layer->biases = calloc(outputs, sizeof(float)); |
| | | for(i = 0; i < outputs; ++i) |
| | | //layer->biases[i] = rand_normal()*scale + scale; |
| | | layer->biases[i] = 0; |
| | | layer->biases[i] = 1; |
| | | |
| | | layer->activation = activation; |
| | | return layer; |
| | | } |
| | | |
| | | /* |
| | | void update_connected_layer(connected_layer layer, float step, float momentum, float decay) |
| | | { |
| | | int i; |
| | | for(i = 0; i < layer.outputs; ++i){ |
| | | float delta = layer.bias_updates[i]; |
| | | layer.bias_adapt[i] += delta*delta; |
| | | layer.bias_momentum[i] = step/sqrt(layer.bias_adapt[i])*(layer.bias_updates[i]) + momentum*layer.bias_momentum[i]; |
| | | layer.biases[i] += layer.bias_momentum[i]; |
| | | } |
| | | for(i = 0; i < layer.outputs*layer.inputs; ++i){ |
| | | float delta = layer.weight_updates[i]; |
| | | layer.weight_adapt[i] += delta*delta; |
| | | layer.weight_momentum[i] = step/sqrt(layer.weight_adapt[i])*(layer.weight_updates[i] - decay*layer.weights[i]) + momentum*layer.weight_momentum[i]; |
| | | layer.weights[i] += layer.weight_momentum[i]; |
| | | } |
| | | memset(layer.bias_updates, 0, layer.outputs*sizeof(float)); |
| | | memset(layer.weight_updates, 0, layer.outputs*layer.inputs*sizeof(float)); |
| | | } |
| | | */ |
| | | |
| | | void update_connected_layer(connected_layer layer, float step, float momentum, float decay) |
| | | { |
| | | int i; |
| | |
| | | for(i = 0; i < layer.outputs; ++i){ |
| | | layer.output[i] = activate(layer.output[i], layer.activation); |
| | | } |
| | | //for(i = 0; i < layer.outputs; ++i) if(i%(layer.outputs/10+1)==0) printf("%f, ", layer.output[i]); printf("\n"); |
| | | } |
| | | |
| | | void learn_connected_layer(connected_layer layer, float *input) |