| | |
| | | layer->biases = calloc(n, sizeof(float)); |
| | | layer->bias_updates = calloc(n, sizeof(float)); |
| | | layer->bias_momentum = calloc(n, sizeof(float)); |
| | | float scale = 2./(size*size); |
| | | for(i = 0; i < c*n*size*size; ++i) layer->filters[i] = rand_normal()*scale; |
| | | float scale = 1./(size*size*c); |
| | | for(i = 0; i < c*n*size*size; ++i) layer->filters[i] = scale*(rand_uniform()); |
| | | for(i = 0; i < n; ++i){ |
| | | //layer->biases[i] = rand_normal()*scale + scale; |
| | | layer->biases[i] = 0; |
| | |
| | | |
| | | void forward_convolutional_layer(const convolutional_layer layer, float *in) |
| | | { |
| | | int i; |
| | | int m = layer.n; |
| | | int k = layer.size*layer.size*layer.c; |
| | | int n = ((layer.h-layer.size)/layer.stride + 1)* |
| | |
| | | im2col_cpu(in, layer.c, layer.h, layer.w, layer.size, layer.stride, b); |
| | | gemm(0,0,m,n,k,1,a,k,b,n,1,c,n); |
| | | |
| | | for(i = 0; i < m*n; ++i){ |
| | | layer.output[i] = activate(layer.output[i], layer.activation); |
| | | } |
| | | //for(i = 0; i < m*n; ++i) if(i%(m*n/10+1)==0) printf("%f, ", layer.output[i]); printf("\n"); |
| | | |
| | | } |
| | | |
| | | void gradient_delta_convolutional_layer(convolutional_layer layer) |